Ask a Librarian

Threre are lots of ways to contact a librarian. Choose what works best for you.

HOURS TODAY

Closed

Reference Desk

CONTACT US BY PHONE

(802) 656-2022

Voice

(802) 503-1703

Text

MAKE AN APPOINTMENT OR EMAIL A QUESTION

Schedule an Appointment

Meet with a librarian or subject specialist for in-depth help.

Email a Librarian

Submit a question for reply by e-mail.

WANT TO TALK TO SOMEONE RIGHT AWAY?

Library Hours for Sunday, April 21st

All of the hours for today can be found below. We look forward to seeing you in the library.
HOURS TODAY
10:00 am - 12:00 am
MAIN LIBRARY

SEE ALL LIBRARY HOURS
WITHIN HOWE LIBRARY

MapsM-Th by appointment, email govdocs@uvm.edu

Media Services1:00 pm - 5:00 pm

Reference DeskClosed

OTHER DEPARTMENTS

Special CollectionsClosed

Dana Health Sciences Library9:00 am - 11:00 pm

 

CATQuest

Search the UVM Libraries' collections

UVM Theses and Dissertations

Browse by Department
Format:
Online
Author:
Strother, Camilla Ann
Dept./Program:
Cellular, Molecular, and Biomedical Sciences Graduate Program
Year:
2023
Degree:
Ph. D.
Abstract:
This dissertation encompasses original research on adaptive immune responses triggered by natural viral infections caused by NoV and SARS-CoV-2, as well as an exploration of the rash side effect associated with the TV003 DENV vaccine through the detection of viral RNA. Chapter II delves into the adaptive immune response to GII.17 NoV subsequent to infection. Employing a birth cohort study and samples from previously NoV-naïve children, this chapter strives to identify the correlates of protection. Notably, this work has been accepted and is in the press at Frontiers in Immunology.Chapter III is centered on the SARS-CoV-2 pandemic and investigates the memory B cell response in early SARS-CoV-2 cases. Estimations of SARS-CoV-2 reactive memory B cells post-acute infection have led to the isolation of a novel neutralizing mAb. Distinct from most other mAbs examined, which are derived from early non-memory B cell responses, this mAb (Kiplovamab) was generated from a COVID-19 case predating vaccination. Analysis of its neutralization capacity indicates that Kiplovamab may offer valuable insights for identifying crucial immune escape epitopes in emerging SARS-CoV-2 strains. Chapter IV provides insights into the etiology of the rash induced by live attenuated DENV vaccines and challenge viruses. Investigating the presence of viral RNA and the associated inflammatory response in skin biopsies from vaccinated volunteers, this research contributes to understanding the potential connection between rash occurrence and a tetravalent neutralizing antibody response. In summary, this dissertation seeks to address knowledge gaps in the field of immune responses to three distinct RNA viruses, offering insights into the adaptive immune processes triggered by natural viral infections and vaccination, and their implications for the emergence of viral variants.
Note:
Access to this item embargoed until 10/05/2024.