Ask a Librarian

Threre are lots of ways to contact a librarian. Choose what works best for you.

HOURS TODAY

Closed

Reference Desk

CONTACT US BY PHONE

(802) 656-2022

Voice

(802) 503-1703

Text

MAKE AN APPOINTMENT OR EMAIL A QUESTION

Schedule an Appointment

Meet with a librarian or subject specialist for in-depth help.

Email a Librarian

Submit a question for reply by e-mail.

WANT TO TALK TO SOMEONE RIGHT AWAY?

Library Hours for Sunday, April 28th

All of the hours for today can be found below. We look forward to seeing you in the library.
HOURS TODAY
10:00 am - 12:00 am
MAIN LIBRARY

SEE ALL LIBRARY HOURS
WITHIN HOWE LIBRARY

MapsM-Th by appointment, email govdocs@uvm.edu

Media Services1:00 pm - 5:00 pm

Reference DeskClosed

OTHER DEPARTMENTS

Special CollectionsClosed

Dana Health Sciences Library9:00 am - 11:00 pm

 

CATQuest

Search the UVM Libraries' collections

UVM Theses and Dissertations

Browse by Department
Format:
Online
Author:
Zhou, Bolu
Dept./Program:
Pharmacology
Year:
2017
Degree:
MS
Abstract:
Tight regulation of cephalic blood circulation is critical under normal physiological conditions, and dysregulation of blood flow to the head occurs in pathophysiological situations such as stroke and migraine headache. The facial artery is an extracranial artery which is one of branches from the external carotid artery territory and its extracranial position indicates its importance in regulating head hemodynamics. Transient receptor potential vanniloid type 1 (TRPV1) is a cation channel permeable to Ca2+ and Na+. Intracellular Ca2+ increase causes vasoconstriction. A previous study indicated the presence of TRPV1 in smooth muscle cells in the facial artery. Protein kinase C (PKC) is found to sensitize TRPV1 channels in neurons. Our lab’s preliminary data suggested PKC modulates TRPV1 in the middle meningeal artery. Serotonin (5-HT) is an endogenous vasoconstrictor, and the 5-HT2 receptor is a Gq-protein-coupled receptor that activates PKC. In the present study, we found that 5-HT caused facial artery constriction. Thus, we studied whether TRPV1 channel acting as a Ca2+ entry channel is involved in 5-HT induced facial artery constriction. We used a pressurized arteriography technique to examine the artery diameter. The results indicate that 1) TRPV1 antagonist blunted 30 nM 5-HT-induced mouse facial artery constriction. 5-HT constriction on the facial artery from TRPV1 knock out mice was significantly blunted compared to the constriction on the facial artery from wild type mice; 2) PKC, which is a downstream signaling molecule of 5-HT2 receptor, is involved in capsaicin (TRPV1 agonist)-induced facial artery constriction; 3) 5-HT-induced facial artery constriction is mediated mostly by activation of 5-HT1 and 5-HT2 receptors; 4) 5-HT2 but not 5-HT1 receptor is involved in 5-HT-induced facial artery constriction via opening of TRPV1 channels; 5) PKC may be involved in 5-HT-induced facial artery constriction; 6) The L-type-voltage-dependent Ca2+ channel is involved in 5-HT-induced facial artery constriction. We conclude that activation of TRPV1 channel contributes to serotonin-induced 5-HT2 receptor-mediated constriction of the mouse facial artery.