Ask a Librarian

Threre are lots of ways to contact a librarian. Choose what works best for you.

HOURS TODAY

10:00 am - 3:00 pm

Reference Desk

CONTACT US BY PHONE

(802) 656-2022

Voice

(802) 503-1703

Text

MAKE AN APPOINTMENT OR EMAIL A QUESTION

Schedule an Appointment

Meet with a librarian or subject specialist for in-depth help.

Email a Librarian

Submit a question for reply by e-mail.

WANT TO TALK TO SOMEONE RIGHT AWAY?

Library Hours for Thursday, May 2nd

All of the hours for today can be found below. We look forward to seeing you in the library.
HOURS TODAY
8:00 am - 12:00 am
MAIN LIBRARY

SEE ALL LIBRARY HOURS
WITHIN HOWE LIBRARY

MapsM-Th by appointment, email govdocs@uvm.edu

Media Services8:00 am - 7:00 pm

Reference Desk10:00 am - 3:00 pm

OTHER DEPARTMENTS

Special Collections10:00 am - 6:00 pm

Dana Health Sciences Library7:30 am - 11:00 pm

 

CATQuest

Search the UVM Libraries' collections

UVM Theses and Dissertations

Browse by Department
Format:
Online
Author:
Ahmed, Amr
Dept./Program:
Electrical Engineering
Year:
2014
Degree:
MS
Abstract:
This thesis presents a novel antenna structure that satisfies the challenging requirements of an air coupled high speed ground penetrating radar (GPR). The desired GPR system is to achieve high spatial resolution and accurate inspection results while scanning at relatively high speed for highway pavement and bridge deck inspection. This work utilizes the Ultra Wide Band (UWB) antenna design to achieve both physical and electrical requirements imposed. The design procedure starts with a short survey to discuss typical UWB antennas used for GPR applications, and various tradeoffs of each type specifically when used for Air Coupled GPR applications. Our structure anatomy is presented, followed by a theory introduction that mainly focuses on achieving good impedance matching throughout the proposed antenna structure. A proof-of-concept MATLAB model is created to evaluate the preliminary physical dimensions that can achieve minimum reflections at antenna's feed point. These dimensions are then used in SolidWorks to create a 3D model that is imported later in HFSS to obtain accurate electromagnetic characteristics. Furthermore, fine tunings are performed to the antenna structure to optimize both gain and impedance matching. The SolidWorks 3-D structural model is finally used for antenna fabrication. The measurements recorded from the field experiments using the prototypes manufactured are compared to the simulation results confirming our initial findings. Both measurements and simulation results demonstrated very small reflection loss across the 700 MHz ~ 6 GHz frequency band with a very high directed gain and radiation efficiency.