Ask a Librarian

Threre are lots of ways to contact a librarian. Choose what works best for you.

HOURS TODAY

10:00 am - 3:00 pm

Reference Desk

CONTACT US BY PHONE

(802) 656-2022

Voice

(802) 503-1703

Text

MAKE AN APPOINTMENT OR EMAIL A QUESTION

Schedule an Appointment

Meet with a librarian or subject specialist for in-depth help.

Email a Librarian

Submit a question for reply by e-mail.

WANT TO TALK TO SOMEONE RIGHT AWAY?

Library Hours for Thursday, May 2nd

All of the hours for today can be found below. We look forward to seeing you in the library.
HOURS TODAY
8:00 am - 12:00 am
MAIN LIBRARY

SEE ALL LIBRARY HOURS
WITHIN HOWE LIBRARY

MapsM-Th by appointment, email govdocs@uvm.edu

Media Services8:00 am - 7:00 pm

Reference Desk10:00 am - 3:00 pm

OTHER DEPARTMENTS

Special Collections10:00 am - 6:00 pm

Dana Health Sciences Library7:30 am - 11:00 pm

 

CATQuest

Search the UVM Libraries' collections

UVM Theses and Dissertations

Browse by Department
Format:
Online
Author:
Abdalla, Sarah
Dept./Program:
Biochemistry
Year:
2012
Degree:
MS
Abstract:
Factor Va is a plasma protein that plays an important role in the regulation of blood coagulation by serving as the essential cofactor in thrombin generation via the prothrombinase complex. The procofactor, factor V, exists in two whole blood pools with 75-80% found in plasma, and 20-25% stored in the a-granules of platelets. As compared to the plasma procofactor, platelet-derived factor V is physically and functionally distinct, and displays a more procoagulant phenotype. Despite these profound differences, platelet-derived factor V originates via endocytosis of the plasma-derived procofactor by megakaryocytes. Endocytosis is mediated by two receptors: an unidentified, specific factor V receptor, and low density lipoprotein (LDL) receptor related protein-l (LRP-1), a ubiquitous receptor that plays a role in endocytosis of proteins targeted for lysosomal degradation.
These observations represent a novel role for LRP-1 in endocytosis of a protein that is functionally modified, and not targeted for lysosomal degradation. The goal of this study is to define the factor V regions involved in its interactions with the unidentified factor V receptor and LRP-1 expressed on megakaryocytes to begin to elucidate the molecular mechanisms regulating formation of the unique platelet-derived cofactor. Epitope mapping studies were performed using anti-factor V monoclonal antibodies, E9 and anti-factor V #2. Previous observations indicated that these factor Va light chain antibodies inhibited endocytosis of· factor V by megakaryocytes. However, subsequent analyses demonstrated that only E9 inhibited both factor V binding and endocytosis. Thus, it was used for these studies.
Western blotting of factor V and Va suggested that E9 recognizes a conformation-dependent epitope, which precluded the use of conventional epitope mapping approaches used for linear epitopes. E9 had no effect on factor Va cofactor activity in a plasma-based clotting assay suggesting that it does not perturb factor Va's interactions with the membrane surface or factor Xa. Cleavage of lipid-bound factor Va by factor Xa at Arg1765 was also not affected by the presence of E9 suggesting that the epitope is not directed against this cleavage site. When E9 was used to immunoprecipitate the factor Xa-generated light chain cleavage products, both the 48/46 and 30 kDa light chain fragments were captured. These observations were confirmed using a solid phase competition assay where factor Xa-cleaved factor Va inhibited binding of ¹²⁵I-factor V to E9 as well as intact factor V or Va. Limited proteolysis of the factor Va light chain with trypsin or Asp-N, generated products that were no longer detectable in this assay. These combined observations suggest that the anti-factor V light chain antibody, E9, has an epitope that is conformation-dependent and extremely labile. Future directions and alternative approaches are discussed.