Ask a Librarian

Threre are lots of ways to contact a librarian. Choose what works best for you.

HOURS TODAY

10:00 am - 4:00 pm

Reference Desk

CONTACT US BY PHONE

(802) 656-2022

Voice

(802) 503-1703

Text

MAKE AN APPOINTMENT OR EMAIL A QUESTION

Schedule an Appointment

Meet with a librarian or subject specialist for in-depth help.

Email a Librarian

Submit a question for reply by e-mail.

WANT TO TALK TO SOMEONE RIGHT AWAY?

Library Hours for Thursday, November 21st

All of the hours for today can be found below. We look forward to seeing you in the library.
HOURS TODAY
8:00 am - 12:00 am
MAIN LIBRARY

SEE ALL LIBRARY HOURS
WITHIN HOWE LIBRARY

MapsM-Th by appointment, email govdocs@uvm.edu

Media Services8:00 am - 7:00 pm

Reference Desk10:00 am - 4:00 pm

OTHER DEPARTMENTS

Special Collections10:00 am - 6:00 pm

Dana Health Sciences Library7:30 am - 11:00 pm

 

CATQuest

Search the UVM Libraries' collections

UVM Theses and Dissertations

Browse by Department
Format:
Online
Author:
Nolan, Christopher Michael
Dept./Program:
Mechanical Engineering
Year:
2023
Degree:
M.S.
Abstract:
Flexible thermal protection systems (FTPS) are being considered as they allow for atmospheric reentry of larger payloads. Current rigid aeroshells struggle to achieve this as they are limited by the shroud of the rocket being used. One promising material candidate for these flexible heat shields is a Hi-Nicalon silicon carbide (SiC) fabric. By utilizing the UVM 30 kW Inductively Coupled Plasma Facility, an array of experiments were performed to explore the chemical response to plasma in a variety of atmospheric conditions. The main goal of this thesis is to better understand gas surface interactions, mainly through two-photon laser-induced fluorescence (TALIF) and Raman scattering. These methods of probing the flow measure atomic reactant species density and molecular product species within the boundary layer respectively. Performing TALIF would be improving on the statistical distribution of catalytic rates previously measured at UVM. A Raman Scattering model was created to effectively extract temperature and density information from the experimental data. Over the course of these long scans, it needs to be assured that the chemical composition of the surface has reached a steady state. To assess the surface chemistry of a sample, an SEM and EDS interrogation were implemented to observe the change of surface chemistry over the course of 10 minutes of exposure.