Ask a Librarian

Threre are lots of ways to contact a librarian. Choose what works best for you.

HOURS TODAY

10:00 am - 4:00 pm

Reference Desk

CONTACT US BY PHONE

(802) 656-2022

Voice

(802) 503-1703

Text

MAKE AN APPOINTMENT OR EMAIL A QUESTION

Schedule an Appointment

Meet with a librarian or subject specialist for in-depth help.

Email a Librarian

Submit a question for reply by e-mail.

WANT TO TALK TO SOMEONE RIGHT AWAY?

Library Hours for Thursday, November 21st

All of the hours for today can be found below. We look forward to seeing you in the library.
HOURS TODAY
8:00 am - 12:00 am
MAIN LIBRARY

SEE ALL LIBRARY HOURS
WITHIN HOWE LIBRARY

MapsM-Th by appointment, email govdocs@uvm.edu

Media Services8:00 am - 7:00 pm

Reference Desk10:00 am - 4:00 pm

OTHER DEPARTMENTS

Special Collections10:00 am - 6:00 pm

Dana Health Sciences Library7:30 am - 11:00 pm

 

CATQuest

Search the UVM Libraries' collections

UVM Theses and Dissertations

Browse by Department
Format:
Online
Author:
Heffernan, Thomas Joseph
Dept./Program:
Mechanical Engineering
Year:
2020
Degree:
M.S.
Abstract:
In the interest of mitigating high launch costs, small satellites are often chosen as secondary payloads during launch operations. Their lower mission importance dictates stringent restrictions on the propulsion systems which can be implemented as they cannot contain combustible or toxic agents; a common solution to this problem is implementation of micronozzles with cold-gas propellants in order to generate thrust. The present research explores the efficacy of leveraging microwave-assisted decomposition of a 'green' chemical blowing agent, namely Azodicarbonamide, as a propellant for use in a microthruster. The thermal evolution of a heterogeneous ferromagnetic-doped propellant is analyzed numerically using COMSOL Multiphysics in a microwave cavity. Simulation results utilizing and effective medium approximation are then compared against experimental decomposition times for various particle loading percentages using a conventional 2.45GHz multi-mode microwave and the decomposition timescale is assessed for microthruster implementation. Finally, the sensitivity of the model to material dielectric properties is considered and analyzed. Initial thermal modeling showed a promising heating timescale, though experimental results demonstrated a larger time scale than useful in existing micropropulsion concepts. The system demonstrates promising capability for green, non-combustible pre-pressurization but does not meet thruster implementation requirements; this may change due to the rapidly evolving field of microwave-heating, particularly where heterogeneous ferromagnetically-doped mixtures are concerned.