Ask a Librarian

Threre are lots of ways to contact a librarian. Choose what works best for you.

HOURS TODAY

10:00 am - 4:00 pm

Reference Desk

CONTACT US BY PHONE

(802) 656-2022

Voice

(802) 503-1703

Text

MAKE AN APPOINTMENT OR EMAIL A QUESTION

Schedule an Appointment

Meet with a librarian or subject specialist for in-depth help.

Email a Librarian

Submit a question for reply by e-mail.

WANT TO TALK TO SOMEONE RIGHT AWAY?

Library Hours for Thursday, November 21st

All of the hours for today can be found below. We look forward to seeing you in the library.
HOURS TODAY
8:00 am - 12:00 am
MAIN LIBRARY

SEE ALL LIBRARY HOURS
WITHIN HOWE LIBRARY

MapsM-Th by appointment, email govdocs@uvm.edu

Media Services8:00 am - 7:00 pm

Reference Desk10:00 am - 4:00 pm

OTHER DEPARTMENTS

Special Collections10:00 am - 6:00 pm

Dana Health Sciences Library7:30 am - 11:00 pm

 

CATQuest

Search the UVM Libraries' collections

UVM Theses and Dissertations

Browse by Department
Format:
Online
Author:
Pond, Tyson Charles
Dept./Program:
Mathematics and Statistics
Year:
2020
Degree:
M.S.
Abstract:
With the rise of social media, researchers have become increasingly interested in understanding how individuals inform, influence, and interact with others in their social network and how the network mediates the flow of information. Previous research on information flow has primarily used models of contagion to study the adoption of a technology, propagation of purchase recommendations, or virality of online activity. Social (or "complex") contagions spread differently than biological ("simple") contagions. A limitation when researchers validate contagion models is that they neglect much of the massive amounts of data now available through online social networks. Here we model a recently proposed information-theoretic approach to measuring the flow of written information in data. We use an idealized generative model for text data -- the quoter model -- which naturally incorporates this measure. We investigate how network structure impacts information flow and find that the quoter model exhibits interesting features similar to those of complex contagion. Finally, we offer an analytical treatment of the quoter model: we derive approximate calculations and show dependence on model parameters. This thesis gives rise to new hypotheses about the role of the social network in facilitating information flow, which future research can investigate using real-world data.