Ask a Librarian

Threre are lots of ways to contact a librarian. Choose what works best for you.

HOURS TODAY

10:00 am - 4:00 pm

Reference Desk

CONTACT US BY PHONE

(802) 656-2022

Voice

(802) 503-1703

Text

MAKE AN APPOINTMENT OR EMAIL A QUESTION

Schedule an Appointment

Meet with a librarian or subject specialist for in-depth help.

Email a Librarian

Submit a question for reply by e-mail.

WANT TO TALK TO SOMEONE RIGHT AWAY?

Library Hours for Thursday, November 21st

All of the hours for today can be found below. We look forward to seeing you in the library.
HOURS TODAY
8:00 am - 12:00 am
MAIN LIBRARY

SEE ALL LIBRARY HOURS
WITHIN HOWE LIBRARY

MapsM-Th by appointment, email govdocs@uvm.edu

Media Services8:00 am - 7:00 pm

Reference Desk10:00 am - 4:00 pm

OTHER DEPARTMENTS

Special Collections10:00 am - 6:00 pm

Dana Health Sciences Library7:30 am - 11:00 pm

 

CATQuest

Search the UVM Libraries' collections

UVM Theses and Dissertations

Browse by Department
Format:
Online
Author:
Casiano-Diaz, Emanuel
Dept./Program:
Physics
Year:
2019
Degree:
M.S.
Abstract:
The constituents of a quantum many-body system can be inextricably linked, a phenomenon known as quantum entanglement. Entanglement can be used as a resource for quantum computing, quantum communication and detecting phase transitions, among others. The amount of entanglement can be quantified via the von Neumann and Rényi entropies, which have their origins in information theory. In this work, the quantum entanglement between subsystems of a one dimensional lattice model of fermions is quantified. The von Neumann and Rényi entropies were calculated for two types of subsystems. In the first study, the subsystems were treated as two subsets of particles, and in the second, as two spatial subregions. Finally, by considering particle superselection rules, the amount of entanglement that can actually be accessed as a resource was calculated. In all cases, the quantum entanglement served to detect phase transitions in the model.