Ask a Librarian

Threre are lots of ways to contact a librarian. Choose what works best for you.

HOURS TODAY

10:00 am - 4:00 pm

Reference Desk

CONTACT US BY PHONE

(802) 656-2022

Voice

(802) 503-1703

Text

MAKE AN APPOINTMENT OR EMAIL A QUESTION

Schedule an Appointment

Meet with a librarian or subject specialist for in-depth help.

Email a Librarian

Submit a question for reply by e-mail.

WANT TO TALK TO SOMEONE RIGHT AWAY?

Library Hours for Thursday, November 21st

All of the hours for today can be found below. We look forward to seeing you in the library.
HOURS TODAY
8:00 am - 12:00 am
MAIN LIBRARY

SEE ALL LIBRARY HOURS
WITHIN HOWE LIBRARY

MapsM-Th by appointment, email govdocs@uvm.edu

Media Services8:00 am - 7:00 pm

Reference Desk10:00 am - 4:00 pm

OTHER DEPARTMENTS

Special Collections10:00 am - 6:00 pm

Dana Health Sciences Library7:30 am - 11:00 pm

 

CATQuest

Search the UVM Libraries' collections

UVM Theses and Dissertations

Browse by Department
Format:
Online
Author:
Champagne, Devin Pierre
Dept./Program:
Cellular, Molecular, and Biomedical Sciences
Year:
2018
Degree:
Ph. D.
Abstract:
Methylation controlled J protein (MCJ) is a negative regulator of mitochondrial metabolism that has a substantial impact on overall cell metabolism and function. MCJ is highly expressed by naïve CD8+ T cells, however its role in their immune effector functions was unknown. In this dissertation, it will be demonstrated that MCJ restricts the mitochondrial metabolism of CD8+ T cells, in part by reducing respiratory supercomplex formation. MCJ deficiency enhances the immune effector functions and memory responses of CD8+ T cells in a mitochondrial ATP dependent manner. As a consequence, protection to influenza virus infection is substantially improved. Reduced expression of MCJ therefore promotes viral immunity, however the loss of MCJ is not always beneficial. In cancer, decreased MCJ expression is correlated with ATP binding cassette (ABC) transporter mediated chemotherapy resistance and poor patient responses. This dissertation will also address the role of MCJ in chemoresistance. Increased mitochondrial ATP production due to MCJ deficiency is sufficient to fuel ABC transporter activity, thereby directly promoting chemoresistance. This can be reversed by restoration of MCJ function in chemoresistant cells. Overall, the results presented in this dissertation identify MCJ as a potential therapeutic target, as modulating MCJ expression can significantly affect the severity of viral infections and the responses to chemotherapy.