Ask a Librarian

Threre are lots of ways to contact a librarian. Choose what works best for you.

HOURS TODAY

10:00 am - 4:00 pm

Reference Desk

CONTACT US BY PHONE

(802) 656-2022

Voice

(802) 503-1703

Text

MAKE AN APPOINTMENT OR EMAIL A QUESTION

Schedule an Appointment

Meet with a librarian or subject specialist for in-depth help.

Email a Librarian

Submit a question for reply by e-mail.

WANT TO TALK TO SOMEONE RIGHT AWAY?

Library Hours for Thursday, November 21st

All of the hours for today can be found below. We look forward to seeing you in the library.
HOURS TODAY
8:00 am - 12:00 am
MAIN LIBRARY

SEE ALL LIBRARY HOURS
WITHIN HOWE LIBRARY

MapsM-Th by appointment, email govdocs@uvm.edu

Media Services8:00 am - 7:00 pm

Reference Desk10:00 am - 4:00 pm

OTHER DEPARTMENTS

Special Collections10:00 am - 6:00 pm

Dana Health Sciences Library7:30 am - 11:00 pm

 

CATQuest

Search the UVM Libraries' collections

UVM Theses and Dissertations

Browse by Department
Format:
Online
Author:
Walker, Joel
Dept./Program:
Chemistry
Year:
2017
Degree:
PhD
Abstract:
The 1,3-diaza Claisen rearrangement was initially discovered by the Madalengoitia group in the early 2000s. Tertiary, allylic, amines nucleophilically add to the carbon of a heterocumulene (isocyanate, isothiocyanate, or carbodiimide) to generate a zwitterion which then undergoes [3,3]-sigmatropic rearrangement. The rearrangements conducted with a carbodiimide generate guanidine-containing skeletons. The guanidine functional group is found in many biologically active products, making it a worthwhile chemical target. To this end, strained, tertiary, allylic, amine 2-benzyl-2-azabicyclo[2.2.1]hept-5-ene reacts with in-situ generated carbodiimides in the 1,3-diaza-Claisen rearrangement to afford structurally interesting bicyclic guanidines. Use of more electron deficient carbodiimides makes these rearrangements more facile; however, there are not sufficient methods for the synthesis of highly electron deficient carbodiimides. The synthesis of such carbodiimides was explored through new synthetic methodologies for the dehydration of ureas and desulfurization of isothioureas and the carbodiimides were used in a series of intermolecular rearrangements with the strained, tertiary, allylic, amine. The new methodologies for the synthesis of electron deficient carbodiimides were then applied to a series of intramolecular substrates, further expanding the 1,3-diaza Claisen rearrangement methodologies. To date series of bicyclic, tricyclic, and monocyclic guanidines of varying structures have been synthesized. The synthetic efforts towards these products are herein described.