Ask a Librarian

Threre are lots of ways to contact a librarian. Choose what works best for you.

HOURS TODAY

10:00 am - 4:00 pm

Reference Desk

CONTACT US BY PHONE

(802) 656-2022

Voice

(802) 503-1703

Text

MAKE AN APPOINTMENT OR EMAIL A QUESTION

Schedule an Appointment

Meet with a librarian or subject specialist for in-depth help.

Email a Librarian

Submit a question for reply by e-mail.

WANT TO TALK TO SOMEONE RIGHT AWAY?

Library Hours for Thursday, November 21st

All of the hours for today can be found below. We look forward to seeing you in the library.
HOURS TODAY
8:00 am - 12:00 am
MAIN LIBRARY

SEE ALL LIBRARY HOURS
WITHIN HOWE LIBRARY

MapsM-Th by appointment, email govdocs@uvm.edu

Media Services8:00 am - 7:00 pm

Reference Desk10:00 am - 4:00 pm

OTHER DEPARTMENTS

Special Collections10:00 am - 6:00 pm

Dana Health Sciences Library7:30 am - 11:00 pm

 

CATQuest

Search the UVM Libraries' collections

UVM Theses and Dissertations

Browse by Department
Format:
Online
Author:
McKeown, Meghan
Dept./Program:
Plant Biology
Year:
2016
Degree:
PhD
Abstract:
Flowering time is a carefully regulated trait that integrates cues from temperature and photoperiod to coordinate flowering at favorable times of the year. This dissertation aims to understand the evolution of genetic architecture that facilitated the transition of Pooideae, a subfamily of grass, from the tropics to the temperate northern hemisphere approximately 50 million years ago. Two traits hypothesized to have facilitated this evolutionary shift are the use of long-term low-temperature (vernalization) to ready plants for flowering, and long-day photoperiods to induce flowering. In chapter one I review literature on the regulation of grass flowering by vernalization and photoperiod, and in chapters two and three I determine the role of VERNALIZATION 1 (VRN1) and VRN2, known to confer vernalization responsiveness in core Pooideae crop species, in flowering time across Pooideae. In chapter four, I then test predictions of the hypothesis that the Brachypodium distachyon miR5200 ortholog in the ancestor of Pooideae was important for suppressing short day flowering through its negative regulation of flowering time integrator FLOWERING LOCUS T (FT)/VERNALIZATION3 (VRN3). In combination with other studies, my data demonstrate that VRN1-mediated vernalization responsiveness evolved early in the Pooideae, while VRN2-mediated vernalization responsiveness appears to have evolved much later in the diversification of Pooideae. Although miR5200 likely evolved early in the Pooideae, its transcriptional regulation by short day photoperiod appears derived within Brachypodium distachyon. This work answers important questions about the evolutionary origin of temperature- and photoperiod-mediated flowering in an economically important clade that contains crop species such as wheat (Triticum aestivum) and barley (Hordeum vulgare). Directions for future work on this topic are discussed in chapter 5.