Ask a Librarian

Threre are lots of ways to contact a librarian. Choose what works best for you.

HOURS TODAY

10:00 am - 4:00 pm

Reference Desk

CONTACT US BY PHONE

(802) 656-2022

Voice

(802) 503-1703

Text

MAKE AN APPOINTMENT OR EMAIL A QUESTION

Schedule an Appointment

Meet with a librarian or subject specialist for in-depth help.

Email a Librarian

Submit a question for reply by e-mail.

WANT TO TALK TO SOMEONE RIGHT AWAY?

Library Hours for Thursday, November 21st

All of the hours for today can be found below. We look forward to seeing you in the library.
HOURS TODAY
8:00 am - 12:00 am
MAIN LIBRARY

SEE ALL LIBRARY HOURS
WITHIN HOWE LIBRARY

MapsM-Th by appointment, email govdocs@uvm.edu

Media Services8:00 am - 7:00 pm

Reference Desk10:00 am - 4:00 pm

OTHER DEPARTMENTS

Special Collections10:00 am - 6:00 pm

Dana Health Sciences Library7:30 am - 11:00 pm

 

CATQuest

Search the UVM Libraries' collections

UVM Theses and Dissertations

Browse by Department
Format:
Online
Author:
Liu, Ning
Dept./Program:
Nutritional and Food Sciences
Year:
2015
Degree:
MS
Abstract:
Whey proteins are mainly a group of small globular proteins. Their structures can be modified by physical, chemical and other means to improve their functionality. The objectives of this study were to investigate the effect of radiation on protein-protein interaction, microstructure, and microbiological properties of whey protein-water solutions. Whey protein isolate (WPI) solutions (27-36% protein) were treated with different dosages (10-35 KGy) of gamma radiation. The protein solutions were analyzed for viscosity, turbidity, soluble nitrogen, total plate count, and yeast and mold counts. The interactions between whey proteins were also analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and scanning electron microscopy (SEM). The viscosity of protein solution (27%, w/w) was increased from 2.19 for the control to 4.78 mPa*s for the sample treated at 25 KGy, respectively, and viscosity also increased during storage at 23°C. The soluble nitrogen (10%, w/w) was decreased from 100% to 54.7% for control and the sample treated at 35 KGy. The effects of gamma radiation and storage time on viscosity of whey protein solutions were significant (p<0.05). Radiation treatment had significant impact on soluble nitrogen of whey protein solutions (p<0.05). SDS-PAGE results showed that intensity of the major protein band was reduced and it had smeared appearance for the treated samples and photographs of SEM also showed that protein-protein interactions induced by gamma radiation in the model system.