Ask a Librarian

Threre are lots of ways to contact a librarian. Choose what works best for you.

HOURS TODAY

10:00 am - 4:00 pm

Reference Desk

CONTACT US BY PHONE

(802) 656-2022

Voice

(802) 503-1703

Text

MAKE AN APPOINTMENT OR EMAIL A QUESTION

Schedule an Appointment

Meet with a librarian or subject specialist for in-depth help.

Email a Librarian

Submit a question for reply by e-mail.

WANT TO TALK TO SOMEONE RIGHT AWAY?

Library Hours for Thursday, November 21st

All of the hours for today can be found below. We look forward to seeing you in the library.
HOURS TODAY
8:00 am - 12:00 am
MAIN LIBRARY

SEE ALL LIBRARY HOURS
WITHIN HOWE LIBRARY

MapsM-Th by appointment, email govdocs@uvm.edu

Media Services8:00 am - 7:00 pm

Reference Desk10:00 am - 4:00 pm

OTHER DEPARTMENTS

Special Collections10:00 am - 6:00 pm

Dana Health Sciences Library7:30 am - 11:00 pm

 

CATQuest

Search the UVM Libraries' collections

UVM Theses and Dissertations

Browse by Department
Format:
Online
Author:
Zhi, Ruoyu
Dept./Program:
Electrical Engineering
Year:
2016
Degree:
MS
Abstract:
Inertial wearable sensors constitute a booming industry. They are self contained, low powered and highly miniaturized. They allow for remote or self monitoring of health-related parameters. When used to obtain 3-D position, velocity and orientation information, research has shown that it is possible to draw conclusion about issues such as fall risk, Parkinson disease and gait assessment. A key issues in extracting information from accelerometers and gyroscopes is the fusion of their noisy data to allow accurate assessment of the disease. This, so far, is an unsolved problem. Typically, a Kalman filter or its nonlinear, non-Gaussian version are implemented for estimating attitude - which in turn is critical for position estimation. However, sampling rates and large state vectors required make them unacceptable for the limited-capacity batteries of low-cost wearable sensors. The low-computation cost complementary filter has recently been re-emerging as the algorithm for attitude estimation. We employ it with a heuristic drift elimination method that is shown to remove, almost entirely, the drift caused by the gyroscope and hence generate a fairly accurate attitude and drift-eliminated position estimate. Inertial sensor data is obtained from the 10-axis SP-10C sensor, attached to a wearable insole that is inserted in the shoe. Data is obtained from walking in a structured indoor environment in Votey Hall.