Ask a Librarian

Threre are lots of ways to contact a librarian. Choose what works best for you.

HOURS TODAY

10:00 am - 4:00 pm

Reference Desk

CONTACT US BY PHONE

(802) 656-2022

Voice

(802) 503-1703

Text

MAKE AN APPOINTMENT OR EMAIL A QUESTION

Schedule an Appointment

Meet with a librarian or subject specialist for in-depth help.

Email a Librarian

Submit a question for reply by e-mail.

WANT TO TALK TO SOMEONE RIGHT AWAY?

Library Hours for Thursday, November 21st

All of the hours for today can be found below. We look forward to seeing you in the library.
HOURS TODAY
8:00 am - 12:00 am
MAIN LIBRARY

SEE ALL LIBRARY HOURS
WITHIN HOWE LIBRARY

MapsM-Th by appointment, email govdocs@uvm.edu

Media Services8:00 am - 7:00 pm

Reference Desk10:00 am - 4:00 pm

OTHER DEPARTMENTS

Special Collections10:00 am - 6:00 pm

Dana Health Sciences Library7:30 am - 11:00 pm

 

CATQuest

Search the UVM Libraries' collections

UVM Theses and Dissertations

Browse by Department
Format:
Online
Author:
Yousefi Zowj, Afsoon
Dept./Program:
Computer Science
Year:
2016
Degree:
MS
Abstract:
In some wireless sensor network applications, multiple sensors can be used to measure the same variable, while differing in their sampling cost, for example in their power requirements. This raises the problem of automatically controlling heterogeneous sensor suites in wireless sensor network applications, in a manner that balances cost and accuracy of sensors. Genetic programming (GP) is applied to this problem, considering two basic approaches. First, a hierarchy of models is constructed, where increasing levels in the hierarchy use sensors of increasing cost. If a model that polls low cost sensors exhibits too much prediction uncertainty, the burden of prediction is automatically transferred to a higher level model using more expensive sensors. Second, models are trained with cost as an optimization objective, called non-hierarchical models, that use conditionals to automatically select sensors based on both cost and accuracy. These approaches are compared in a setting where the available budget for sampling is considered to remain constant, and in a setting where the system is sensitive to a fluctuating budget, for example available battery power. It is showed that in both settings, for increasingly challenging datasets, hierarchical models makes predictions with equivalent accuracy yet lower cost than non-hierarchical models.