Ask a Librarian

Threre are lots of ways to contact a librarian. Choose what works best for you.

HOURS TODAY

10:00 am - 4:00 pm

Reference Desk

CONTACT US BY PHONE

(802) 656-2022

Voice

(802) 503-1703

Text

MAKE AN APPOINTMENT OR EMAIL A QUESTION

Schedule an Appointment

Meet with a librarian or subject specialist for in-depth help.

Email a Librarian

Submit a question for reply by e-mail.

WANT TO TALK TO SOMEONE RIGHT AWAY?

Library Hours for Thursday, November 21st

All of the hours for today can be found below. We look forward to seeing you in the library.
HOURS TODAY
8:00 am - 12:00 am
MAIN LIBRARY

SEE ALL LIBRARY HOURS
WITHIN HOWE LIBRARY

MapsM-Th by appointment, email govdocs@uvm.edu

Media Services8:00 am - 7:00 pm

Reference Desk10:00 am - 4:00 pm

OTHER DEPARTMENTS

Special Collections10:00 am - 6:00 pm

Dana Health Sciences Library7:30 am - 11:00 pm

 

CATQuest

Search the UVM Libraries' collections

UVM Theses and Dissertations

Browse by Department
Format:
Online
Author:
Powell, Nathaniel V.
Dept./Program:
Mathematics and Statistics
Year:
2016
Degree:
MS
Abstract:
At the heart of statistical learning lies the concept of uncertainty. Similarly, embodied agents such as robots and animals must likewise address uncertainty, as sensation is always only a partial reflection of reality. This thesis addresses the role that uncertainty can play in a central building block of intelligence: categorization. Cognitive agents are able to perform tasks like categorical perception through physical interaction (active categorical perception; ACP), or passively at a distance (distal categorical perception; DCP). It is possible that the former scaffolds the learning of the latter. However, it is unclear whether DCP indeed scaffolds ACP in humans and animals, nor how a robot could be trained to likewise learn DCP from ACP. Here we demonstrate a method for doing so which involves uncertainty: robots perform ACP when uncertain and DCP when certain. Furthermore, we demonstrate that robots trained in such a manner are more competent at categorizing novel objects than robots trained to categorize in other ways. This suggests that such a mechanism would also be useful for humans and animals, suggesting that they may be employing some version of this mechanism.