Ask a Librarian

Threre are lots of ways to contact a librarian. Choose what works best for you.

HOURS TODAY

10:00 am - 4:00 pm

Reference Desk

CONTACT US BY PHONE

(802) 656-2022

Voice

(802) 503-1703

Text

MAKE AN APPOINTMENT OR EMAIL A QUESTION

Schedule an Appointment

Meet with a librarian or subject specialist for in-depth help.

Email a Librarian

Submit a question for reply by e-mail.

WANT TO TALK TO SOMEONE RIGHT AWAY?

Library Hours for Thursday, November 21st

All of the hours for today can be found below. We look forward to seeing you in the library.
HOURS TODAY
8:00 am - 12:00 am
MAIN LIBRARY

SEE ALL LIBRARY HOURS
WITHIN HOWE LIBRARY

MapsM-Th by appointment, email govdocs@uvm.edu

Media Services8:00 am - 7:00 pm

Reference Desk10:00 am - 4:00 pm

OTHER DEPARTMENTS

Special Collections10:00 am - 6:00 pm

Dana Health Sciences Library7:30 am - 11:00 pm

 

CATQuest

Search the UVM Libraries' collections

UVM Theses and Dissertations

Browse by Department
Format:
Online
Author:
Director, Laura Taylor
Dept./Program:
Cell and Molecular Biology Program
Year:
2014
Degree:
MS
Abstract:
A-kinase anchoring proteins (AKAPs) are signaling scaffolds which provide spatial and temporal organization of signaling pathways in discrete subcellular compartments. Through tethering the cyclic-AMP dependent protein kinase A (PKA), AKAPs target PKA activity to distinct regions in the cell, bringing PKA in close proximity to its target proteins. This provides a high level of specificity and regulation of PKA and its role in mediating a number of biological processes, one of which is cell migration. Cell migration is a highly dynamic and fundamental process, when misregulated can lead to a number of pathologies. The process of cell migration requires integration and coordination of actin cytoskeletal dynamics, adhesion turnover, and contractility. The important role of PKA in regulating the cellular processes involved in cell migration has been extensively studied. Our lab has shown that PKA activity and spatial distribution through AKAPs are localized to the leading edge of migrating cells and are required for effective cell migration, yet the specific AKAPs responsible remain unknown. Traditional methods for identifying AKAPs suffer from a number of limitations. Therefore the objective of the enclosed work is to establish and characterize a novel approach for the identification of cytoskeletal and adhesion-associated AKAPs. We show for the first time, an in vitro approach to identify cytoskeletal AKAPs which may be responsible for localizing PKA to the leading edge of migrating cells.