Ask a Librarian

Threre are lots of ways to contact a librarian. Choose what works best for you.

HOURS TODAY

10:00 am - 4:00 pm

Reference Desk

CONTACT US BY PHONE

(802) 656-2022

Voice

(802) 503-1703

Text

MAKE AN APPOINTMENT OR EMAIL A QUESTION

Schedule an Appointment

Meet with a librarian or subject specialist for in-depth help.

Email a Librarian

Submit a question for reply by e-mail.

WANT TO TALK TO SOMEONE RIGHT AWAY?

Library Hours for Thursday, November 21st

All of the hours for today can be found below. We look forward to seeing you in the library.
HOURS TODAY
8:00 am - 12:00 am
MAIN LIBRARY

SEE ALL LIBRARY HOURS
WITHIN HOWE LIBRARY

MapsM-Th by appointment, email govdocs@uvm.edu

Media Services8:00 am - 7:00 pm

Reference Desk10:00 am - 4:00 pm

OTHER DEPARTMENTS

Special Collections10:00 am - 6:00 pm

Dana Health Sciences Library7:30 am - 11:00 pm

 

CATQuest

Search the UVM Libraries' collections

UVM Theses and Dissertations

Browse by Department
Format:
Online
Author:
Chen, Changfei
Dept./Program:
Electrical Engineering
Year:
2008
Degree:
MS
Abstract:
A wireless sensor network is a network consisting of spatially distributed, sometimeautonomous sensors, communicating wirelessly to cooperatively achieve some task. For example, a wireless sensor network may be used for habitat monitoring to ascertain the environment's temperature, pressure, humidity, etc. In order for a wireless sensor network to provide such data, one needs to ensure there is connectivity between nodes. That is, nodes can communicate to exchange information. To analyze connectivity between sensors, the radio communication range of each sensor, also called the communication footprint, needs to be known. To date, the models used to analyze a sensor's radio communication footprint have been overly simplistic (i.e., isotropic) and thus yield results not found in practice. Footprints are highly dependent on the deployment environments, which are typically heterogeneous and non-isotropic in structure.
In this work, a 'weak-monotonicity' (W-M) model is leveraged to represent a footprint's non-isotropic behavior. The work also considers the heterogeneity of the environment through the use of the log-normal shadowing model. In particular, the usable percentage of the W-M footprint (the area where the power exceeds the receiver threshold) in such environments is considered through analysis and simulation. We then develop an enhanced footprint model which overlays multiple W-M patterns and use this method to represent experimental propagation data. The work also considers the use of graph theory methods to analyze the connectivity of randomly deployed networks in nonhomogeneous, non-isotropic environments.