Ask a Librarian

Threre are lots of ways to contact a librarian. Choose what works best for you.

HOURS TODAY

10:00 am - 4:00 pm

Reference Desk

CONTACT US BY PHONE

(802) 656-2022

Voice

(802) 503-1703

Text

MAKE AN APPOINTMENT OR EMAIL A QUESTION

Schedule an Appointment

Meet with a librarian or subject specialist for in-depth help.

Email a Librarian

Submit a question for reply by e-mail.

WANT TO TALK TO SOMEONE RIGHT AWAY?

Library Hours for Monday, June 17th

All of the hours for today can be found below. We look forward to seeing you in the library.
HOURS TODAY
8:00 am - 8:00 pm
MAIN LIBRARY

SEE ALL LIBRARY HOURS
WITHIN HOWE LIBRARY

Maps9:00 am - 4:30 am

Media Services8:00 am - 5:00 pm

Reference Desk10:00 am - 4:00 pm

Cyber Cafe (All Night Study)Closed

OTHER DEPARTMENTS

Special Collections10:00 am - 5:00 pm

Dana Medical Library7:30 am - 11:00 pm

Classroom Technology Services8:00 am - 4:30 pm

 

CATQuest

Search the UVM Libraries' collections

UVM Theses and Dissertations

Browse by Department
Format:
Online
Author:
Sengupta, Sanghita
Dept./Program:
Graduate Program in Materials Science
Year:
2018
Degree:
Ph.D.
Abstract:
In this talk, I will discuss three problems related to the novel physics of two-dimensional quantum materials such as graphene, group-VI dichalcogenides family (TMDCs viz. MoS2 , WS2, MoSe2 , etc) and Silicene-Germanene class of materials. The first problem poses a simple question - how do the quantum excitations in a graphene membrane affect adsorption? Using the tools of diagrammatic perturbation theory, I will derive the scattering rates of a neutral atom on a graphene membrane. I will show how this seemingly naive model can serve as a non-relativistic condensed matter analogue of the infamous infrared problem in Quantum Electrodynamics. In the second problem, I will move from the framework of a single atom adsorption to a collective behavior of fluids near graphene and TMDC - interfaces. Following the seminal work of Dzyaloshinskii-Lifshitz-Pitaevskii on van der Waals interactions, I will develop a theory of liquid film growth on 2 dimensional surfaces. Additionally, I will report an exotic phenomenon of critical wetting instability which is a result of the dielectric engineering and discuss experimental and technological implications. Finally, the last problem will see the introduction of spin-orbit coupling effects in the 2D topological insulator family of Silicene-Germanene class of materials. I will present a unified theory for their in-plane magnetic field response leading to "anomalous," i.e electron interaction-dependent spin-flip transition moment. Can this correction to spin-flip transition moment be measured? I will propose magneto-optical experimental techniques that can probe the effects.