Ask a Librarian

Threre are lots of ways to contact a librarian. Choose what works best for you.

HOURS TODAY

11:00 am - 3:00 pm

Reference Desk

CONTACT US BY PHONE

(802) 656-2022

Voice

(802) 503-1703

Text

MAKE AN APPOINTMENT OR EMAIL A QUESTION

Schedule an Appointment

Meet with a librarian or subject specialist for in-depth help.

Email a Librarian

Submit a question for reply by e-mail.

WANT TO TALK TO SOMEONE RIGHT AWAY?

Library Hours for Friday, April 26th

All of the hours for today can be found below. We look forward to seeing you in the library.
HOURS TODAY
8:00 am - 6:00 pm
MAIN LIBRARY

SEE ALL LIBRARY HOURS
WITHIN HOWE LIBRARY

MapsM-Th by appointment, email govdocs@uvm.edu

Media Services8:00 am - 4:30 pm

Reference Desk11:00 am - 3:00 pm

OTHER DEPARTMENTS

Special Collections10:00 am - 5:00 pm

Dana Health Sciences Library7:30 am - 6:00 pm

 

CATQuest

Search the UVM Libraries' collections

UVM Theses and Dissertations

Browse by Department
Format:
Online
Author:
Zhou, Jia
Dept./Program:
Microbiology and Molecular Genetics
Year:
2015
Degree:
PhD
Abstract:
The G-quadruplex DNA is a four-stranded DNA structure that is highly susceptible to oxidation due to its G-rich sequence and its structure. Oxidative DNA base damages can be mutagenic or lethal to cells if they are left unrepaired. The base excision repair (BER) pathway is the predominant pathway for repair of oxidized DNA bases. DNA glycosylases are the first enzymes in BER and are responsible for removing base lesions from DNA. How DNA glycosylases remove base lesions from duplex and single-stranded DNA has been intensively studied, while how they act on G-quadruplex DNA remains to be explored. In Chapter II of this dissertation, we studied the glycosylase activity of the five mammalian DNA glycosylases (OGG1, NTH1, NEIL1, NEIL2 and mouse Neil3) on G-quadruplex DNA formed by telomere sequences that contain a single base lesion. We found that telomeric sequences that contain thymine glycol (Tg), 8-oxo-7,8-dihydroguanine (8-oxoG), guanidinohydantoin (Gh) or spiroiminodihydantoin (Sp) all formed the basket form of an antiparallel G-quadruplex DNA structure in Na+ solution. We also showed that no glycosylase was able to remove 8-oxoG from quadruplex DNA, while its further oxidation products, Sp and Gh, were good substrates for mNeil3 and NEIL1 in quadruplex DNA. In addition, mNeil3 is the only enzyme that removes Tg from quadruplex DNA and the glycosylase strongly prefers Tg in the telomere sequence context in both single-stranded and double-stranded DNA. In Chapter III, we extended our study to telomeric G-quadruplex DNA in K+ solution and we also studied quadruplex DNA formed by promoter sequences. We found that 8-oxoG, Gh and Sp reduce the thermostability and alter the folding of telomeric quadruplex DNA in a location-dependent manner. Also, the NEIL1 and NEIL3 DNA glycosylases are able to remove hydantoin lesions but none of the glycosylases, including OGG1, are able to remove 8-oxoG from telomeric quadruplex DNA in K+ solution. Interestingly, NEIL1 or NEIL3 do not efficiently remove hydantoin lesions at the site that is most prone to oxidation in quadruplex DNA. However, hydantoin lesions at the same site in quadruplex DNA are removed much more rapidly by NEIL1, NEIL2 and NEIL3, when an extra telomere TTAGGG repeat is added to the commonly studied four-repeat quadruplex DNA to make it a five-repeat telomere quadruplex DNA. We also show that APE1 cleaves furan in selected positions in Na+-coordinated telomeric quadruplex DNA structures. We use promoter sequences of the VEGF and c-MYC genes as models to study promoter G-quadruplex DNA structures, and show that the NEIL glycosylases primarily remove Gh from Na+-coordinated antiparallel quadruplex DNA but not from K+-coordinated parallel quadruplex DNA containing VEGF or c-MYC promoter sequences. Taken together, our data show that the NEIL DNA glycosylases may be involved in both telomere maintenance and gene regulation.