Ask a Librarian

Threre are lots of ways to contact a librarian. Choose what works best for you.

HOURS TODAY

11:00 am - 3:00 pm

Reference Desk

CONTACT US BY PHONE

(802) 656-2022

Voice

(802) 503-1703

Text

MAKE AN APPOINTMENT OR EMAIL A QUESTION

Schedule an Appointment

Meet with a librarian or subject specialist for in-depth help.

Email a Librarian

Submit a question for reply by e-mail.

WANT TO TALK TO SOMEONE RIGHT AWAY?

Library Hours for Friday, April 26th

All of the hours for today can be found below. We look forward to seeing you in the library.
HOURS TODAY
8:00 am - 6:00 pm
MAIN LIBRARY

SEE ALL LIBRARY HOURS
WITHIN HOWE LIBRARY

MapsM-Th by appointment, email govdocs@uvm.edu

Media Services8:00 am - 4:30 pm

Reference Desk11:00 am - 3:00 pm

OTHER DEPARTMENTS

Special Collections10:00 am - 5:00 pm

Dana Health Sciences Library7:30 am - 6:00 pm

 

CATQuest

Search the UVM Libraries' collections

UVM Theses and Dissertations

Browse by Department
Format:
Online
Author:
Mirando, Adam Christopher
Dept./Program:
Biochemistry
Year:
2015
Degree:
Ph.D.
Abstract:
In addition to its canonical role in aminoacylation, threonyl-tRNA synthetase (TARS) possesses pro-angiogenic activity that is susceptible to the TARS-specific antibiotic borrelidin. However, the therapeutic benefit of borrelidin is offset by its strong toxicity to living cells. The removal of a single methylene group from the parent borrelidin generates BC194, a modified compound with significantly reduced toxicity but comparable anti-angiogenic potential. Biochemical analyses revealed that the difference in toxicities was due to borrelidin's stimulation of amino acid starvation at ten-fold lower concentrations than BC194. However, both compounds were found to inhibit in vitro and in vivo models of angiogenesis at sub-toxic concentrations, suggesting a similar mechanism that is distinct from the toxic responses. Crystal structures of TARS in complex with each compound indicated that the decreased contacts in the BC194 structure may render it more susceptible to competition with the canonical substrates and permit sufficient aminoacylation activity over a wider concentration of inhibitor. Conversely, both borrelidin and BC194 induce identical conformational changes in TARS, providing a rationale for their comparable effects on angiogenesis. The mechanisms of TARS and borrelidin-based compounds on angiogenesis were subsequently tested using zebrafish and cell-based models. These data revealed ectopic branching, non-functional vessels, and increased cell-cell contracts following BC194-treatment or knockdown of TARS expression, suggesting a role for the enzyme in the maturation and guidance of nascent vasculature. Using various TARS constructs this function was found to be dependent on two interactions or activities associated with the TARS enzyme that are distinct from its canonical aminoacylation activity. Furthermore, observations that TARS may influence VEGF expression and purinergic signaling suggest the possibility for a receptor-mediated response. Taken together, the results presented here demonstrate a clear role for TARS in angiogenesis, independent of its primary function in translation. Although the exact molecular mechanisms through which TARS and borrelidin regulate this activity remain to be determined, these data provide a foundation for future investigations of TARS's function in vascular biology and its use as a target for angiogenesis-based therapy.