Ask a Librarian

Threre are lots of ways to contact a librarian. Choose what works best for you.

HOURS TODAY

11:00 am - 3:00 pm

Reference Desk

CONTACT US BY PHONE

(802) 656-2022

Voice

(802) 503-1703

Text

MAKE AN APPOINTMENT OR EMAIL A QUESTION

Schedule an Appointment

Meet with a librarian or subject specialist for in-depth help.

Email a Librarian

Submit a question for reply by e-mail.

WANT TO TALK TO SOMEONE RIGHT AWAY?

Library Hours for Friday, April 26th

All of the hours for today can be found below. We look forward to seeing you in the library.
HOURS TODAY
8:00 am - 6:00 pm
MAIN LIBRARY

SEE ALL LIBRARY HOURS
WITHIN HOWE LIBRARY

MapsM-Th by appointment, email govdocs@uvm.edu

Media Services8:00 am - 4:30 pm

Reference Desk11:00 am - 3:00 pm

OTHER DEPARTMENTS

Special Collections10:00 am - 5:00 pm

Dana Health Sciences Library7:30 am - 6:00 pm

 

CATQuest

Search the UVM Libraries' collections

UVM Theses and Dissertations

Browse by Department
Format:
Online
Author:
Schenker, Jakob E.
Dept./Program:
Natural Resources
Year:
2014
Degree:
MS
Abstract:
Factory legacy pollutants are an increasing concern for waterways as old infrastructure deteriorates and contaminates nearby environments. The Fisherville Mill in Grafton, Massachusetts, USA exemplifies this problem since it has now fallen into disrepair and is leaking Bunker C crude oil into the adjoining Blackstone River, a third order stream. Our research examines how effectively an ecologically engineered system (EES), consisting of anaerobic bacteria environments, fungal microcosms, and aquatic plant environments, can break down petroleum hydrocarbons, specifically aliphatic and polycyclic aromatic hydrocarbons (PAH), in this river environment. Our testing protocol involved taking water samples before and after each filtration stage monthly from June through October 2012. Water samples were analyzed at the Brown University Superfund Research Lab using mass spectrometry to determine aliphatic and PAH concentrations. Post-treatment aliphatic oil concentrations were significantly different from baseline concentrations (p=0.005), with an average reduction of 95.2%. Post-treatment PAH concentrations were also significantly different from baseline concentrations (p=0.001), with an average reduction of 91%. We conclude that this EES provided effective treatment for Bunker C crude oil, even though some filtration stages did not achieve their intended objectives. This type of filtration arrangement might be scaled up for use in larger remediation efforts regarding Bunker C crude oil.