Ask a Librarian

Threre are lots of ways to contact a librarian. Choose what works best for you.

HOURS TODAY

11:00 am - 3:00 pm

Reference Desk

CONTACT US BY PHONE

(802) 656-2022

Voice

(802) 503-1703

Text

MAKE AN APPOINTMENT OR EMAIL A QUESTION

Schedule an Appointment

Meet with a librarian or subject specialist for in-depth help.

Email a Librarian

Submit a question for reply by e-mail.

WANT TO TALK TO SOMEONE RIGHT AWAY?

Library Hours for Friday, April 26th

All of the hours for today can be found below. We look forward to seeing you in the library.
HOURS TODAY
8:00 am - 6:00 pm
MAIN LIBRARY

SEE ALL LIBRARY HOURS
WITHIN HOWE LIBRARY

MapsM-Th by appointment, email govdocs@uvm.edu

Media Services8:00 am - 4:30 pm

Reference Desk11:00 am - 3:00 pm

OTHER DEPARTMENTS

Special Collections10:00 am - 5:00 pm

Dana Health Sciences Library7:30 am - 6:00 pm

 

CATQuest

Search the UVM Libraries' collections

UVM Theses and Dissertations

Browse by Department
Format:
Online
Author:
Connors, Emilee Colleen
Dept./Program:
Pharmacology
Year:
2009
Degree:
PhD
Abstract:
The voltage-gated potassium channel Kv1.2 is a key determinant of cellular excitability in the nervous and cardiovascular systems. In the brain, Kv1.2 is strongly expressed in neurons of the hippocampus, a structure essential for learning and memory, and the cerebellum, a structure essential for motor control and cognition. In the vasculature, Kv1.2 is expressed in smooth muscle cells where it contributes to the regulation of blood flow. Dynamic regulation of Kv1.2 is fundamental to its role in these tissues. Disruption of this regulation can manifest in a range of pathological conditions, including seizure, hypertension and neuropathic pain. Thus, elucidating the mechanisms by which Kv1.2 is regulated addresses fundamental aspects of human physiology and disease. Kv1.2 was the first voltage gated ion channel found to be regulated by tyrosine phosphorylation. The ionic current of Kv1.2 is suppressed following tyrosine phosphorylation by a process involving channel endocytosis. Movement of channel away from the plasma membrane involves many proteins associated with the cytoskeleton, including dynamin, cortactin and RhoA. Because trafficking of Kv1.2 away from the cell surface has emerged as the primary mechanism for its negative regulation, we hypothesized that trafficking of the channel to the cell surface could be a mechanism for positive regulation of the Kv1.2 ionic current. Activation of the cAMP/PKA pathway enhances the ionic current of Kv1.2.
We hypothesized that a mechanism for this positive regulation is an increase in the amount of channel protein present at the cell surface. Our data show that cAMP can regulate Kv1.2 surface levels by two opposing trafficking pathways, one PKA-dependent and one PKA-independent. Channel homeostasis is preserved by the dynamic balance between these two pathways. Accordingly, any change in the levels of cAMP causes a net increase in the amount of Kv1.2 present at the cell surface. Specific C-terminal phosphorylation sites of Kv1.2 were identified and shown to have a role in maintaining basal surface channel levels. These findings demonstrate channel trafficking as a mechanism for the positive regulation of the Kv1.2 ionic current. In addition to Kv1.2 trafficking at the plasma membrane, movement of the channel from the biosynthetic pathway to the cell surface is another checkpoint for its regulation. Here we show that the protein arginine methyltransferase 8 (PRMT8) is able to promote the ER exit of Kv1.2, resulting in an increase in Kv1.2 surface expression. PRMT8 not only promoted surface expression of the high mannose glycosylated form of Kv1.2, characteristic of immature, ER-localized channels, but also enhanced Kv1.2 total protein levels, most likely by decreasing the amount of channel protein available for ER-associated degradation (ERAD). These findings highlight biosynthetic trafficking of Kv1.2 as a crucial part of its regulation and identify a novel role for PRMT8, as a regulator of biosynthetic protein trafficking.