Ask a Librarian

Threre are lots of ways to contact a librarian. Choose what works best for you.

HOURS TODAY

10:00 am - Closed

Reference Desk

CONTACT US BY PHONE

(802) 656-2022

Voice

(802) 503-1703

Text

MAKE AN APPOINTMENT OR EMAIL A QUESTION

Schedule an Appointment

Meet with a librarian or subject specialist for in-depth help.

Email a Librarian

Submit a question for reply by e-mail.

WANT TO TALK TO SOMEONE RIGHT AWAY?

Library Hours for Saturday, April 27th

All of the hours for today can be found below. We look forward to seeing you in the library.
HOURS TODAY
10:00 am - 5:30 pm
MAIN LIBRARY

SEE ALL LIBRARY HOURS
WITHIN HOWE LIBRARY

MapsM-Th by appointment, email govdocs@uvm.edu

Media Services1:00 pm - 5:00 pm

Reference Desk10:00 am - Closed

OTHER DEPARTMENTS

Special CollectionsClosed

Dana Health Sciences Library10:00 am - 6:00 pm

 

CATQuest

Search the UVM Libraries' collections

UVM Theses and Dissertations

Browse by Department
Format:
Online
Author:
DiStasi, Stephen
Dept./Program:
Electrical Engineering
Year:
2008
Degree:
MS
Abstract:
For a variety of wireless sensor network applications, sensor nodes may find their received signal strengths dominated by small-scale propagation effects. Particularly impacted are applications designed to monitor structural health and environmental conditions in metal cavities such as aircraft, busses, and shipping containers. Small changes in each sensor's position or carrier frequency can cause large variations in this received signal strength, thereby compromising link connectivity. We leverage a technique called Wireless Sensors Sensing Wireless (WSSW) in which wireless sensors act as scalar network analyzers in order to characterize their own environment. WSSW data can enable sensors to react to particularly bad fading, such as hyper-Rayleigh, by switching to a good channel or by implementing other mitigation techniques, such as utilizing a diversity antenna. In this work, the WSSW concept has been extended to accommodate mesh networks and include a spectrum analysis capability for recognizing potentially interfering wireless activity.
The test of mitigation techniques is often problematic since application sites are far from controlled environments and are often difficult to access. To address this problem, we have developed a Compact Reconfigurable Channel Emulator (CRCE) to create a laboratory environment that is configurable to a variety of repeatable fading scenarios. With the CRCE, fading characteristics found at a specific wireless sensor network location may be replicated inside the chamber to discover the connectivity capabilities of the sensors and the effectiveness of diversity schemes (e.g., channel switching or multi-element antenna arrays).