Ask a Librarian

Threre are lots of ways to contact a librarian. Choose what works best for you.

HOURS TODAY

Closed

Reference Desk

CONTACT US BY PHONE

(802) 656-2022

Voice

(802) 503-1703

Text

MAKE AN APPOINTMENT OR EMAIL A QUESTION

Schedule an Appointment

Meet with a librarian or subject specialist for in-depth help.

Email a Librarian

Submit a question for reply by e-mail.

WANT TO TALK TO SOMEONE RIGHT AWAY?

Library Hours for Saturday, April 1st

All of the hours for today can be found below. We look forward to seeing you in the library.
HOURS TODAY
10:00 am - 5:30 pm
MAIN LIBRARY

SEE ALL LIBRARY HOURS
WITHIN HOWE LIBRARY

MapsClosed

Media Services1:00 pm - 5:00 pm

Reference DeskClosed

OTHER DEPARTMENTS

Special CollectionsClosed

Dana Health Sciences Library10:00 am - 6:00 pm

 

CATQuest

Search the UVM Libraries' collections

UVM Theses and Dissertations

Browse by Department
Format:
Online
Author:
Hahn, Sage
Dept./Program:
Complex Systems and Data Science
Year:
2023
Degree:
Ph. D.
Abstract:
An immense collective effort has been put towards the development of methods forquantifying brain activity and structure. In parallel, a similar effort has focused on collecting experimental data, resulting in ever-growing data banks of complex human in vivo neuroimaging data. Machine learning, a broad set of powerful and effective tools for identifying multivariate relationships in high-dimensional problem spaces, has proven to be a promising approach toward better understanding the relationships between the brain and different phenotypes of interest. However, applied machine learning within a predictive framework for the study of neuroimaging data introduces several domain-specific problems and considerations, leaving the overarching question of how to best structure and run experiments ambiguous. In this work, I cover two explicit pieces of this larger question, the relationship between data representation and predictive performance and a case study on issues related to data collected from disparate sites and cohorts. I then present the Brain Predictability toolbox, a soft- ware package to explicitly codify and make more broadly accessible to researchers the recommended steps in performing a predictive experiment, everything from framing a question to reporting results. This unique perspective ultimately offers recommendations, explicit analytical strategies, and example applications for using machine learning to study the brain.