Ask a Librarian

Threre are lots of ways to contact a librarian. Choose what works best for you.

HOURS TODAY

10:00 am - 3:00 pm

Reference Desk

CONTACT US BY PHONE

(802) 656-2022

Voice

(802) 503-1703

Text

MAKE AN APPOINTMENT OR EMAIL A QUESTION

Schedule an Appointment

Meet with a librarian or subject specialist for in-depth help.

Email a Librarian

Submit a question for reply by e-mail.

WANT TO TALK TO SOMEONE RIGHT AWAY?

Library Hours for Wednesday, April 24th

All of the hours for today can be found below. We look forward to seeing you in the library.
HOURS TODAY
8:00 am - 12:00 am
MAIN LIBRARY

SEE ALL LIBRARY HOURS
WITHIN HOWE LIBRARY

MapsM-Th by appointment, email govdocs@uvm.edu

Media Services8:00 am - 7:00 pm

Reference Desk10:00 am - 3:00 pm

OTHER DEPARTMENTS

Special Collections10:00 am - 6:00 pm

Dana Health Sciences Library7:30 am - 11:00 pm

 

CATQuest

Search the UVM Libraries' collections

UVM Theses and Dissertations

Browse by Department
Format:
Online
Author:
Girard, Joshua Harrison
Dept./Program:
Mechanical Engineering
Year:
2022
Degree:
M.S.
Abstract:
This paper presents research concerning the use of visual-inertial Simultaneous Localization And Mapping (SLAM) algorithms to aid in Continuous Wave (CW) radar target mapping. SLAM is an established field in which radarhas been used to internally contribute to the localization algorithms. Instead, the application in this case is to use SLAM outputs to localize radar data and construct three-dimensional target maps which can be viewed in augmented reality. These methods are transferable to other types of radar units and sensors, but this paper presents the research showing how the methods can be applied to calculate depth efficiently with CW radar through triangulation using an intersection algorithm enhanced by calculating intersection angles. Localization of the radar target is achieved through quaternion algebra. Due to the compact nature of the SLAM and CW devices, the radar unit can be operated entirely handheld. Targets are scanned in a free-form manner where there is no need to have a gridded scanning layout. One main advantage to this method is eliminating many hours of usage training and expertise, thereby eliminating ambiguity in the location, size and depth of buried or hidden targets. Additionally, this method grants the user the additional power, penetration and sensitivity of CW radar without the lack of range finding. Applications include pipe and buried structure location, avalanche rescue, landmine detection, structural health monitoring and historical site research. Improvements to the method such as Snell's law of refraction are also discussed. The result is an algorithm that produces accurate 3-D models of buried or obscured objects using a single frequency CW radar.
Note:
Access to this item embargoed until 04/28/2024.