Ask a Librarian

Threre are lots of ways to contact a librarian. Choose what works best for you.

HOURS TODAY

11:00 am - 3:00 pm

Reference Desk

CONTACT US BY PHONE

(802) 656-2022

Voice

(802) 503-1703

Text

MAKE AN APPOINTMENT OR EMAIL A QUESTION

Schedule an Appointment

Meet with a librarian or subject specialist for in-depth help.

Email a Librarian

Submit a question for reply by e-mail.

WANT TO TALK TO SOMEONE RIGHT AWAY?

Library Hours for Friday, April 19th

All of the hours for today can be found below. We look forward to seeing you in the library.
HOURS TODAY
8:00 am - 6:00 pm
MAIN LIBRARY

SEE ALL LIBRARY HOURS
WITHIN HOWE LIBRARY

MapsM-Th by appointment, email govdocs@uvm.edu

Media Services8:00 am - 4:30 pm

Reference Desk11:00 am - 3:00 pm

OTHER DEPARTMENTS

Special Collections10:00 am - 5:00 pm

Dana Health Sciences Library7:30 am - 6:00 pm

 

CATQuest

Search the UVM Libraries' collections

UVM Theses and Dissertations

Browse by Department
Format:
Online
Author:
Deutsch, Jamie Lucille
Dept./Program:
Cellular, Molecular, and Biomedical Sciences Graduate Program
Year:
2020
Degree:
M.S.
Abstract:
Hematopoiesis is the complex differentiation process involving the formation of all blood cells from a common progenitor; the hematopoietic stem cell. Errors in this process can lead to acute leukemia, or a rapid accumulation of immature blood cells which hinders proper immune function. While survival rates of this devastating disease have increased dramatically over the last several decades, certain cytogenetic abnormalities remain risk factors for treatment resistance and relapse. One of these abnormalities is a chromosomal translocation involving the transcription factor, AF10 Mix-Lineage Leukemia, Translocated to, 10 (MLLT 10, referred to as AF10) is involved in several oncogenic translocations involved in high-risk leukemia. Functionally characterized as a cofactor of the histone methyltransferase, DOT1L, the extent of AF10 function has not been determined. Examination of AF10 structure and interaction partner, b-Catenin, has lead us to develop a hypothesis regarding the role of AF10 in canonical Wnt signaling. Wnt is a highly complex signaling pathway which plays roles in cell fate determination and self-renewal, and is thought to be vital for the onset and progression of leukemia. We hypothesize that the AF10 fusion protein, CALM-AF10, impacts the normal AF10-b-Catenin interaction, and acts to dysregulate Wnt signaling as a mechanism for promoting leukemia. We have developed a luciferase reporter system in HEK293T cells by which to test this hypothesis, and utilize immunoprecipitation to investigate the interaction between CALM-AF10 and b-Catenin. We determine through the work of this thesis, that CALM-AF10 upregulates Wnt signaling in a manner independent of an interaction with b-Catenin.