Ask a Librarian

Threre are lots of ways to contact a librarian. Choose what works best for you.

HOURS TODAY

10:00 am - 3:00 pm

Reference Desk

CONTACT US BY PHONE

(802) 656-2022

Voice

(802) 503-1703

Text

MAKE AN APPOINTMENT OR EMAIL A QUESTION

Schedule an Appointment

Meet with a librarian or subject specialist for in-depth help.

Email a Librarian

Submit a question for reply by e-mail.

WANT TO TALK TO SOMEONE RIGHT AWAY?

Library Hours for Tuesday, April 23rd

All of the hours for today can be found below. We look forward to seeing you in the library.
HOURS TODAY
8:00 am - 12:00 am
MAIN LIBRARY

SEE ALL LIBRARY HOURS
WITHIN HOWE LIBRARY

MapsM-Th by appointment, email govdocs@uvm.edu

Media Services8:00 am - 7:00 pm

Reference Desk10:00 am - 3:00 pm

OTHER DEPARTMENTS

Special Collections10:00 am - 6:00 pm

Dana Health Sciences Library7:30 am - 11:00 pm

 

CATQuest

Search the UVM Libraries' collections

UVM Theses and Dissertations

Browse by Department
Format:
Online
Author:
Seksinsky, Drue
Dept./Program:
Mechanical Engineering
Year:
2020
Degree:
M.S.
Abstract:
A computational study was conducted of axisymmetric droplet impingement on a flat surface at low droplet Reynolds numbers. The study was motivated by deposition of melted volcanic ash particles within gas turbine engines, which can pose significant safety risk for jet aircraft encountering volcanic ash clouds. The computations were performed using the combined level-set volume-of-fluid method for Reynolds numbers Re in range 0.05[less than or equal to]Re[less than or equal to]10, typical of volcanic ash impingement problems. Computational results were compared to typical assumptions for approximate droplet impact models at high Reynolds number. The computational predictions were validated using existing experimental data. The computations indicate that contact radius increases over short time in proportion to the square root of time, in agreement with short-time analytical predictions. The droplet shape was well approximated by a truncated spherical cap, which spread on the substrate surface an increasing amount as Re was increased. The axial velocity component was approximately independent of radius over most of the droplet, and the radial velocity component was observed to vary log-normally with axial distance. The dissipation rate was distributed throughout the droplet for low Reynolds numbers cases, but became increasingly localized near the contact line as the Reynolds number increased past unity.