Ask a Librarian

Threre are lots of ways to contact a librarian. Choose what works best for you.

HOURS TODAY

10:00 am - Closed

Reference Desk

CONTACT US BY PHONE

(802) 656-2022

Voice

(802) 503-1703

Text

MAKE AN APPOINTMENT OR EMAIL A QUESTION

Schedule an Appointment

Meet with a librarian or subject specialist for in-depth help.

Email a Librarian

Submit a question for reply by e-mail.

WANT TO TALK TO SOMEONE RIGHT AWAY?

Library Hours for Saturday, April 20th

All of the hours for today can be found below. We look forward to seeing you in the library.
HOURS TODAY
10:00 am - 5:30 pm
MAIN LIBRARY

SEE ALL LIBRARY HOURS
WITHIN HOWE LIBRARY

MapsM-Th by appointment, email govdocs@uvm.edu

Media Services1:00 pm - 5:00 pm

Reference Desk10:00 am - Closed

OTHER DEPARTMENTS

Special CollectionsClosed

Dana Health Sciences Library10:00 am - 6:00 pm

 

CATQuest

Search the UVM Libraries' collections

UVM Theses and Dissertations

Browse by Department
Format:
Online
Author:
Wisotzki, Sam
Dept./Program:
Electrical and Biomedical Engineering
Year:
2019
Degree:
M.S.
Abstract:
In automakers' never-ending quest to reduce emissions and improve performance, the turbocharger represents a major step in advancing these goals. By repurposing waste exhaust and compressing the air intake, they are able to increase overall power. One critical control loop in the turbocharger is control of boost pressure via the wastegate. This is a highly nonlinear process and experimental data has shown that a gain-scheduled PID (proportional integral derivative) controller developed with IMC (internal model control) tuning methodology is an effective means to control boost pressure. Motivated by this successful implementation of IMC-PID tuning in the automotive world, this work hopes to extend and analyze that framework. Traditionally, the success of an IMC controller depends on the accuracy of the plant model. This research challenges this view and investigates using IMC with a gain-integrator-delay (GID) model identified at a critical frequency, regardless of the actual plant. The GID model is useful because of its simplicity to characterize and its ability to be translated to the ubiquitous PID controller easily. Three design techniques are developed: (1) design for post-hoc tuning, (2) design for closed loop bandwidth, and (3) design for phase margin. In addition, these techniques are investigated via a Monte Carlo simulation to determine efficacy for when there exists plant/model mismatch. Finally, the three techniques are applied to control the speed of an inertia disk on the Quanser Servo 2 device.