Ask a Librarian

Threre are lots of ways to contact a librarian. Choose what works best for you.

HOURS TODAY

Closed

Reference Desk

CONTACT US BY PHONE

(802) 656-2022

Voice

(802) 503-1703

Text

MAKE AN APPOINTMENT OR EMAIL A QUESTION

Schedule an Appointment

Meet with a librarian or subject specialist for in-depth help.

Email a Librarian

Submit a question for reply by e-mail.

WANT TO TALK TO SOMEONE RIGHT AWAY?

Library Hours for Saturday, November 23rd

All of the hours for today can be found below. We look forward to seeing you in the library.
HOURS TODAY
Closed
MAIN LIBRARY

SEE ALL LIBRARY HOURS
WITHIN HOWE LIBRARY

MapsM-Th by appointment, email govdocs@uvm.edu

Media ServicesClosed

Reference DeskClosed

OTHER DEPARTMENTS

Special CollectionsClosed

Dana Health Sciences Library10:00 am - 6:00 pm

 

CATQuest

Search the UVM Libraries' collections

UVM Theses and Dissertations

Browse by Department
Format:
Online
Author:
Penide Fernandez, Rodrigo
Dept./Program:
Mechanical Engineering
Year:
2020
Degree:
Ph. D.
Abstract:
Flexible thermal protection materials made from two-dimensional woven ceramics fibers are of significant interest for hypersonic inflatable aerodynamic decelerators being developed by NASA for future missions on Mars and other planets. A key component of the thermal shield is a heat-resistant outer ceramic fabric that must withstand harsh aero-thermal atmospheric entry conditions. However, a predictive understanding of heat conduction processes in complex woven-fiber ceramic materials under deformation is currently lacking. This dissertation presents a combined experimental and computational study of thermal conductivity in alumina-based Nextel-440 and silicon carbide Hi-Nicalon 5-harness-satin woven fabrics, using the hot-disk transient plane source method and computational multiscale thermo-mechanical modeling by finite-element analysis. The objective is to create a physics-based model for the anisotropic heat conduction in flexible two-dimensional ceramic materials and quantify and understand the effect of deformation and gas pressure over the out-of-plane thermal conductivity. We find, both experimentally and theoretically, that thermal conductivity of woven fabrics rises in both in-plane and out-of-plane directions, as the transverse load increases. Air gap conduction is shown to play a major role in the insulation capabilities of these materials. The proposed modeling methodology accurately captures the experimental heat conduction results and should be applicable to more complex loading conditions and different woven fabric materials, relevant to extreme high temperature environments.