Ask a Librarian

Threre are lots of ways to contact a librarian. Choose what works best for you.

HOURS TODAY

Closed

Reference Desk

CONTACT US BY PHONE

(802) 656-2022

Voice

(802) 503-1703

Text

MAKE AN APPOINTMENT OR EMAIL A QUESTION

Schedule an Appointment

Meet with a librarian or subject specialist for in-depth help.

Email a Librarian

Submit a question for reply by e-mail.

WANT TO TALK TO SOMEONE RIGHT AWAY?

Library Hours for Saturday, November 23rd

All of the hours for today can be found below. We look forward to seeing you in the library.
HOURS TODAY
Closed
MAIN LIBRARY

SEE ALL LIBRARY HOURS
WITHIN HOWE LIBRARY

MapsM-Th by appointment, email govdocs@uvm.edu

Media ServicesClosed

Reference DeskClosed

OTHER DEPARTMENTS

Special CollectionsClosed

Dana Health Sciences Library10:00 am - 6:00 pm

 

CATQuest

Search the UVM Libraries' collections

UVM Theses and Dissertations

Browse by Department
Format:
Online
Author:
Green, Maxfield E.
Dept./Program:
Complex Systems and Data Science
Year:
2020
Degree:
M.S.
Abstract:
Across the globe, the frequency and size of wildfire events are increasing. Research focused on minimizing wildfire is critically needed to mitigate impending humanitarian and environmental crises. Real-time wildfire response is dependent on timely and accurate prediction of dynamic wildfire fronts. Current models used to inform decisions made by the U.S. Forest Service, such as Farsite, FlamMap and Behave do not incorporate modern remotely sensed wildfire records and are typically deterministic, making uncertainty calculations difficult. In this research, we tested two methods that combine artificial intelligence with remote sensing data. First, a stochastic cellular automata that learns algebraic expressions was fit to the spread of synthetic wildfire through symbolic regression. The validity of the genetic program was tested against synthetic spreading behavior driven by a balanced logistic model. We also tested a deep learning approach to wildfire fire perimeter prediction. Trained on a time-series of geolocated fire perimeters, atmospheric conditions, and satellite images, a deep convolutional neural network forecasts the evolution of the fire front in 24-hour intervals. The approach yielded several relevant high-level abstractions of input data such as NDVI vegetation indexes and produced promising initial results. These novel data-driven methods leveraged abundant and accessible remote sensing data, which are largely unused in industry level wildfire modeling. This work represents a step forward in wildfire modeling through a curated aggregation of satellite image spectral layers, historic wildfire perimeter maps, LiDAR, atmospheric conditions, and two novel simulation models. The results can be used to train and validate future wildfire models, and offer viable alternatives to current benchmark physics-based models used in industry.