Ask a Librarian

Threre are lots of ways to contact a librarian. Choose what works best for you.

HOURS TODAY

10:00 am - 4:00 pm

Reference Desk

CONTACT US BY PHONE

(802) 656-2022

Voice

(802) 503-1703

Text

MAKE AN APPOINTMENT OR EMAIL A QUESTION

Schedule an Appointment

Meet with a librarian or subject specialist for in-depth help.

Email a Librarian

Submit a question for reply by e-mail.

WANT TO TALK TO SOMEONE RIGHT AWAY?

Library Hours for Thursday, November 21st

All of the hours for today can be found below. We look forward to seeing you in the library.
HOURS TODAY
8:00 am - 12:00 am
MAIN LIBRARY

SEE ALL LIBRARY HOURS
WITHIN HOWE LIBRARY

MapsM-Th by appointment, email govdocs@uvm.edu

Media Services8:00 am - 7:00 pm

Reference Desk10:00 am - 4:00 pm

OTHER DEPARTMENTS

Special Collections10:00 am - 6:00 pm

Dana Health Sciences Library7:30 am - 11:00 pm

 

CATQuest

Search the UVM Libraries' collections

UVM Theses and Dissertations

Browse by Department
Format:
Online
Author:
Villamor Lora, Rafael
Dept./Program:
Civil Engineering
Year:
2015
Degree:
MS
Abstract:
Given their potential applications for a number of engineering purposes, the geomechanics of shale reservoirs is becoming one of the most important issues in modern geomechanics. Borehole stability modeling, geophysics, shale oil and shale gas reservoirs, and underground storage of CO2 and nuclear waste are some of these potential applications to name a few. The growing interest in these reservoirs, as a source for hydrocarbons production, has resulted in an increasing demand for fundamental material property data. Laboratory analysis and constitutive models have shown that rock elastic and deformational properties are not single-value, well-defined parameters for a given rock. Finding suitable values for these parameters is of vital importance in many geomechanical applications. In this thesis an extensive experimental program to explore geomechanical properties of shale was developed. A series of triaxial tests were performed in order to evaluate the elasticity, yielding, and failure response of Marcellus shale specimens as a function of pressure, temperature, and bedding angle. Additional characterization includes mineralogy, porosity, and fabric. Rock samples used in this study came from three different locations and depths: one actual reservoir (~7,500 ft. deep), and two outcrops (~300 ft. and ~0 ft. deep).