Ask a Librarian

Threre are lots of ways to contact a librarian. Choose what works best for you.

HOURS TODAY

10:00 am - 3:00 pm

Reference Desk

CONTACT US BY PHONE

(802) 656-2022

Voice

(802) 503-1703

Text

MAKE AN APPOINTMENT OR EMAIL A QUESTION

Schedule an Appointment

Meet with a librarian or subject specialist for in-depth help.

Email a Librarian

Submit a question for reply by e-mail.

WANT TO TALK TO SOMEONE RIGHT AWAY?

Library Hours for Thursday, April 25th

All of the hours for today can be found below. We look forward to seeing you in the library.
HOURS TODAY
8:00 am - 12:00 am
MAIN LIBRARY

SEE ALL LIBRARY HOURS
WITHIN HOWE LIBRARY

MapsM-Th by appointment, email govdocs@uvm.edu

Media Services8:00 am - 7:00 pm

Reference Desk10:00 am - 3:00 pm

OTHER DEPARTMENTS

Special Collections10:00 am - 6:00 pm

Dana Health Sciences Library7:30 am - 11:00 pm

 

CATQuest

Search the UVM Libraries' collections

UVM Theses and Dissertations

Browse by Department
Format:
Online
Author:
Adler, Thomas
Dept./Program:
Geology
Year:
2020
Degree:
M.S.
Abstract:
Variability in export of dissolved organic carbon (DOC) from forested headwater catchments has been attributed to an array of hydrologic, biotic and geochemical drivers. In the Northeast United States specifically, one of the most commonly cited drivers is recovery from acid rain. A major challenge in understanding DOC dynamics has been relating long-term regional trends and patterns to catchment-scale processes and we address this challenge by integrating data driven and experimental methods to analyze trends and processes across spatial scales. On the regional scale, we quantify long-term trends of stream DOC concentrations in USGS headwater catchments with flow adjusted Seasonal Kendall tests. We then compared trend results to catchment attributes compiled in a comprehensive and publicly available dataset (i.e. Catchment Attributes and MEteorology for Large-sample Studies (CAMELS)). Our trend analyses showed notable spatial and temporal variability in export patterns across the Northeast United States. Only for data prior to 2004 increasing stream DOC correlated with decreasing atmospheric sulfate deposition, confirming a transient effect of recovery from acidification. Investigation of climatic, topographic and hydrologic catchment attributes vs. directionality of DOC indicated that soil depth and catchment connectivity as additional driver of DOC exports. At the catchment scale, we tested specific process hypotheses on the role of changes in rain composition (ionic strength (IS) and pH variations) on soils in highly connected riparian vs. disconnected hillslope soils. We performed leaching experiments in replicate on top-soil cores from two forested headwater catchments in the Northeast, the SSHCZO in Pennsylvania and the SRRW in Vermont. These catchments were subjected to sulfate deposition and are now recovering. Compared to SSHCZO, SRRW soils released more DOC under neutral pH and low IS conditions (i.e. recovering conditions); scanning electron microscope imaging indicates a significant DOC contribution from destabilizing soil aggregates. Furthermore, soils from less hydrologically connected landscape positions released significantly more DOC in most cases, confirming the important role landscape position in DOC generation. Overall, our results at regional and local scales are consistent and link local process explanations to regional patterns.