Ask a Librarian

Threre are lots of ways to contact a librarian. Choose what works best for you.

HOURS TODAY

10:00 am - 4:00 pm

Reference Desk

CONTACT US BY PHONE

(802) 656-2022

Voice

(802) 503-1703

Text

MAKE AN APPOINTMENT OR EMAIL A QUESTION

Schedule an Appointment

Meet with a librarian or subject specialist for in-depth help.

Email a Librarian

Submit a question for reply by e-mail.

WANT TO TALK TO SOMEONE RIGHT AWAY?

Library Hours for Monday, June 17th

All of the hours for today can be found below. We look forward to seeing you in the library.
HOURS TODAY
8:00 am - 8:00 pm
MAIN LIBRARY

SEE ALL LIBRARY HOURS
WITHIN HOWE LIBRARY

Maps9:00 am - 4:30 am

Media Services8:00 am - 5:00 pm

Reference Desk10:00 am - 4:00 pm

Cyber Cafe (All Night Study)Closed

OTHER DEPARTMENTS

Special Collections10:00 am - 5:00 pm

Dana Medical Library7:30 am - 11:00 pm

Classroom Technology Services8:00 am - 4:30 pm

 

CATQuest

Search the UVM Libraries' collections

UVM Theses and Dissertations

Browse by Department
Format:
Online
Author:
Grindle, Ryan
Dept./Program:
Department of Mathematics and Statistics
Year:
2018
Degree:
M.S.
Abstract:
Symbolic regression is a method for discovering functions that minimize error on a given dataset. It is of interest to prevent overfitting in symbolic regression. In this work, regularization of symbolic regression is attempted by incorporating an additional fitness objective. This new fitness objective is called Worst Neighbors (WN) score, which measures differences in approximate derivatives in the form of angles. To compute the Worst Neighbors score, place partition points between each pair of adjacent data points. For each pair of data points, compute the maximum angle between the line formed by the pair of data points and the lines formed by adjacent partition points. The maximum of all these maximum angles is the Worst Neighbors score. This method differs from other attempts to regularize symbolic regression because it considers the behavior of the evolved function between data points. A high WN score indicates that the function has overfit the data. A low score could indicate either an underfit solution or a well fit solution. The error objective is used to make this distinction. Worst Neighbors can reduce overfitting in symbolic regression because it encourages functions that have a low error and a low Worst Neighbors score. The error objective helps stop the solutions from becoming underfit and the Worst Neighbors score helps stop the solutions from becoming overfit. To use Worst Neighbors for target functions of higher dimensions, select nearby points as neighbors and compute the Worst Neighbors score on the evolved function restricted to the plane formed by these neighbors and the output direction. For the one dimensional case, Worst Neighbors has promise in reducing error on unseen data when compared with Age-Fitness Pareto Optimization (AFPO). WN achieves a small decrease in testing error on several target functions compared to AFPO.