Ask a Librarian

Threre are lots of ways to contact a librarian. Choose what works best for you.

HOURS TODAY

10:00 am - 4:00 pm

Reference Desk

CONTACT US BY PHONE

(802) 656-2022

Voice

(802) 503-1703

Text

MAKE AN APPOINTMENT OR EMAIL A QUESTION

Schedule an Appointment

Meet with a librarian or subject specialist for in-depth help.

Email a Librarian

Submit a question for reply by e-mail.

WANT TO TALK TO SOMEONE RIGHT AWAY?

Library Hours for Monday, June 17th

All of the hours for today can be found below. We look forward to seeing you in the library.
HOURS TODAY
8:00 am - 8:00 pm
MAIN LIBRARY

SEE ALL LIBRARY HOURS
WITHIN HOWE LIBRARY

Maps9:00 am - 4:30 am

Media Services8:00 am - 5:00 pm

Reference Desk10:00 am - 4:00 pm

Cyber Cafe (All Night Study)Closed

OTHER DEPARTMENTS

Special Collections10:00 am - 5:00 pm

Dana Medical Library7:30 am - 11:00 pm

Classroom Technology Services8:00 am - 4:30 pm

 

CATQuest

Search the UVM Libraries' collections

UVM Theses and Dissertations

Browse by Department
Format:
Online
Author:
Jamison, James A.
Dept./Program:
Department of Electrical and Biomedical Engineering
Year:
2018
Degree:
M.S.
Abstract:
Wireless channel characterization is important for determining both the requirements for a wireless system and its resulting reliability. Wireless systems are becoming ever more pervasive and thus are expected to operate in increasingly more cluttered environments. While these devices may be fixed in location, the channel is still far from ideal due to multipath. Under such conditions, it is desirable to have a means of taking wireless channel measurements in a low-cost and distributed manner, which is not always possible using typical channel measurement equipment. This thesis leverages a software-defined radio (SDR) platform to perform wideband wireless channel measurements. Specifically, the system can measure the scalar frequency response of a wireless channel in a distributed manner and provides measurements with an average mean-squared error of 0.018 % [sigma] and a median error not exceeding 0.631 dB when compared to measurements taken with a vector network analyzer. This accuracy holds true in a highly multipath environment, with a measurement range of [approximately]40 dB. The system is also capable of scaling to multiple wireless links which will be measured simultaneously (up to three links are demonstrated). After validating the measurement system, a measurement campaign is undertook using the system in a highly multipath environment to demonstrate a possible application of the system.