Ask a Librarian

Threre are lots of ways to contact a librarian. Choose what works best for you.

HOURS TODAY

9:00 am - 6:00 pm

Reference Desk

CONTACT US BY PHONE

(802) 656-2022

Voice

(802) 503-1703

Text

MAKE AN APPOINTMENT OR EMAIL A QUESTION

Schedule an Appointment

Meet with a librarian or subject specialist for in-depth help.

Email a Librarian

Submit a question for reply by e-mail.

WANT TO TALK TO SOMEONE RIGHT AWAY?

Library Hours for Thursday, October 18th

All of the hours for today can be found below. We look forward to seeing you in the library.
HOURS TODAY
8:00 am - 12:00 am
MAIN LIBRARY

SEE ALL LIBRARY HOURS
WITHIN BAILEY/HOWE

Maps9:00 am - 5:00 pm

Media Services8:00 am - 9:00 pm

Reference Desk9:00 am - 6:00 pm

Cyber Cafe (All Night Study)12:00 am - 8:00 am

OTHER DEPARTMENTS

Special Collections10:00 am - 6:00 pm

Dana Medical Library7:30 am - 11:00 pm

Classroom Technology Services8:00 am - 4:30 pm

 

CATQuest

Search the UVM Libraries' collections

UVM Theses and Dissertations

Browse by Department
Format:
Online
Author:
Fitzgerald, Mark P.
Dept./Program:
Cellular, Molecular and Biomedical Sciences Graduate Program
Year:
2018
Degree:
MS
Abstract:
This thesis presents evidence of a CD24low/-/CD44+ BCSC subpopulation within the MCF10A breast cancer progression model system. Findings indicate that RUNX1 and RUNX2 expression levels are involved in maintaining the BCSC phenotype. Across two different model systems, qRT-PCR analysis revealed that decreased levels of RUNX1 expression and increased levels of RUNX2 expression are essential for the maintenance of the BCSC subpopulation. It was also shown that low expression levels of RUNX1 and high expression levels of RUNX2 are present in CD24low/-/CD44+ BCSCs as compared to CD24+/CD44+ non-BCSCs. Furthermore, shRNA knockdown of RUNX1 was shown to enhance tumorigenicity, while shRNA knockdown of RUNX2 repressed tumorigenicity in BCSCs, as measured by the tumorsphere-formation assay. This research lays the groundwork for future investigations into the roles of RUNX1 and RUNX2 in regulating stemness in breast cancer.