Ask a Librarian

Threre are lots of ways to contact a librarian. Choose what works best for you.

HOURS TODAY

9:00 am - 6:00 pm

Reference Desk

CONTACT US BY PHONE

(802) 656-2022

Voice

(802) 503-1703

Text

MAKE AN APPOINTMENT OR EMAIL A QUESTION

Schedule an Appointment

Meet with a librarian or subject specialist for in-depth help.

Email a Librarian

Submit a question for reply by e-mail.

WANT TO TALK TO SOMEONE RIGHT AWAY?

Library Hours for Thursday, September 21st

All of the hours for today can be found below. We look forward to seeing you in the library.
HOURS TODAY
8:00 am - 12:00 am
MAIN LIBRARY

SEE ALL LIBRARY HOURS
WITHIN BAILEY/HOWE

Maps9:00 am - 5:00 pm

Media Services8:00 am - 9:00 pm

Reference Desk9:00 am - 6:00 pm

Cyber Cafe (All Night Study)12:00 am - 8:00 am

OTHER DEPARTMENTS

Special Collections10:00 am - 6:00 pm

Dana Medical Library7:30 am - 11:00 pm

Classroom Technology Services8:00 am - 4:30 pm

 

CATQuest

Search the UVM Libraries' collections

UVM Theses and Dissertations

Browse by Department
Format:
Print
Author:
Powers, Beck
Dept./Program:
DEPARTMENT HERE
Degree:
MS
Abstract:
Gene duplications generate critical components of genetic variation that can be selected upon to affect phenotypic evolution. The angiosperm GATA transcription factor family has undergone both ancient and recent gene duplications, with the HAN-like clade displaying divergent functions in organ boundary establishment and lateral organ growth. To better determine the ancestral function within core eudicots, and to investigate their potential role in floral diversification, I conducted HAN-like gene expression and partial silencing analyses in the asterid species petunia (Petunia x hybrida). My results indicate duplication of HAN-like genes at the base of Solanaceae followed by expression diversification within the flower. Although no aberrant phenotypes were apparent following single gene knockdowns, silencing of both paralogs lead to leaf senescence. Together with other functional studies, these data suggest a possible ancestral role for HAN-like genes in core eudicot shoot apical meristem development, followed by functional diversification following both speciation and duplication.