Ask a Librarian

Threre are lots of ways to contact a librarian. Choose what works best for you.

HOURS TODAY

9:00 am - 6:00 pm

Reference Desk

CONTACT US BY PHONE

(802) 656-2022

Voice

(802) 503-1703

Text

MAKE AN APPOINTMENT OR EMAIL A QUESTION

Schedule an Appointment

Meet with a librarian or subject specialist for in-depth help.

Email a Librarian

Submit a question for reply by e-mail.

WANT TO TALK TO SOMEONE RIGHT AWAY?

Library Hours for Thursday, September 21st

All of the hours for today can be found below. We look forward to seeing you in the library.
HOURS TODAY
8:00 am - 12:00 am
MAIN LIBRARY

SEE ALL LIBRARY HOURS
WITHIN BAILEY/HOWE

Maps9:00 am - 5:00 pm

Media Services8:00 am - 9:00 pm

Reference Desk9:00 am - 6:00 pm

Cyber Cafe (All Night Study)12:00 am - 8:00 am

OTHER DEPARTMENTS

Special Collections10:00 am - 6:00 pm

Dana Medical Library7:30 am - 11:00 pm

Classroom Technology Services8:00 am - 4:30 pm

 

CATQuest

Search the UVM Libraries' collections

UVM Theses and Dissertations

Browse by Department
Format:
Print
Author:
Peraki, Maria
Dept./Program:
DEPARTMENT HERE
Degree:
PhD
Abstract:
The world’s growing population results in increased energy needs that cannot yet be fully supported by the renewable sources of energy. These modern conditions and restraints have created the need to further research methods to enhance the recovery of resources previously unavailable due to technical and/or economic reasons and to reduce the environmental impacts of using fossil fuels. In this dissertation, applications of electrokinetic phenomena for the improvement of subsurface energy resource extraction are investigated using experimental and numerical tools. Electrodialysis is proposed as a method of pre-treatment of the flow-back water produced during fracturing stage of shale gas extraction. The method targets the reduction of Total Dissolved Solids levels in the flow-back water so that it can either be treated further or be reused directly. The treatment and reuse of the flow-back water can potentially improve the sustainability of the shale gas extraction, controlling the amounts of water used and the general environmental footprint of the process. In addition, the electrically assisted oil recovery is investigated as a potential technique for the enhancement of oil extraction, especially for the case of heavy crude oil. The high viscosity and low mobility of heavy crude oil render it almost impossible or not economical to extract. The method uses the application of low electrical field (direct current) to the oil reservoir to facilitate and increase the oil recovery by taking advantage of the mechanisms involved in electrokinetic phenomena.