Ask a Librarian

Threre are lots of ways to contact a librarian. Choose what works best for you.

HOURS TODAY

9:00 am - 6:00 pm

Reference Desk

CONTACT US BY PHONE

(802) 656-2022

Voice

(802) 503-1703

Text

MAKE AN APPOINTMENT OR EMAIL A QUESTION

Schedule an Appointment

Meet with a librarian or subject specialist for in-depth help.

Email a Librarian

Submit a question for reply by e-mail.

WANT TO TALK TO SOMEONE RIGHT AWAY?

Library Hours for Monday, September 25th

All of the hours for today can be found below. We look forward to seeing you in the library.
HOURS TODAY
8:00 am - 12:00 am
MAIN LIBRARY

SEE ALL LIBRARY HOURS
WITHIN BAILEY/HOWE

Maps9:00 am - 5:00 pm

Media Services8:00 am - 9:00 pm

Reference Desk9:00 am - 6:00 pm

Cyber Cafe (All Night Study)12:00 am - 8:00 am

OTHER DEPARTMENTS

Special Collections10:00 am - 6:00 pm

Dana Medical Library7:30 am - 11:00 pm

Classroom Technology Services8:00 am - 4:30 pm

 

CATQuest

Search the UVM Libraries' collections

UVM Theses and Dissertations

Browse by Department
Format:
Print
Author:
Wood, Stephanie
Dept./Program:
DEPARTMENT HERE
Degree:
MS
Abstract:
A significant component of recent space exploration has been unmanned mission to comets and asteroids. The increase in interest for these bodies necessitates an increase in demand for higher fidelity trajectory simulations in order to assure mission success. Most available methods for simulating trajectories about asymmetric bodies assume they are of uniform density. This thesis examines a hybrid method that merges a mass concentration (“mascon”) model and a spherical harmonic model using the “Brillouin sphere” as the interface. This joint model will be used for simulating trajectories about variable density bodies and, in particular, contact binary asteroids and comets. The scope of this thesis is confined to the analysis and characterization of the spherical harmonic modeling method in which three bodies of increasing asymmetrical severity are used as test cases: Earth, asteroid 101955 Bennu, and asteroid 25143 Itokawa. Since the zonal harmonics are well defined for Earth, it is used as the initial baseline for the method. Trajectories in the equatorial plane and inclined to this plane are simulated to analyze the dynamical behavior of the environment around each of the three bodies. There are multiple degrees of freedom in the spherical harmonic modeling method which are characterized as follows: (1) The radius of the Brillouin sphere is varied as a function of the altitude of the simulated orbit, (2) The truncation degree of the series is chosen based upon the error incurred in the acceleration field on the chosen Brillouin sphere, and (3) The gravitational potential and acceleration field are calculated using the determined radial location of the Brillouin sphere and the truncation degree. An ideal Brillouin sphere radius and truncation degree are able to be determined as a function of a given orbit where the error in the acceleration field is locally minimized. The dual-density model for a contact binary is found to more accurately describe the dynamical environment around Asteroid 25143 Itokawa compared to the single density model.