Ask a Librarian

Threre are lots of ways to contact a librarian. Choose what works best for you.

HOURS TODAY

11:00 am - 3:00 pm

Reference Desk

CONTACT US BY PHONE

(802) 656-2022

Voice

(802) 503-1703

Text

MAKE AN APPOINTMENT OR EMAIL A QUESTION

Schedule an Appointment

Meet with a librarian or subject specialist for in-depth help.

Email a Librarian

Submit a question for reply by e-mail.

WANT TO TALK TO SOMEONE RIGHT AWAY?

Library Hours for Friday, April 19th

All of the hours for today can be found below. We look forward to seeing you in the library.
HOURS TODAY
8:00 am - 6:00 pm
MAIN LIBRARY

SEE ALL LIBRARY HOURS
WITHIN HOWE LIBRARY

MapsM-Th by appointment, email govdocs@uvm.edu

Media Services8:00 am - 4:30 pm

Reference Desk11:00 am - 3:00 pm

OTHER DEPARTMENTS

Special Collections10:00 am - 5:00 pm

Dana Health Sciences Library7:30 am - 6:00 pm

 

CATQuest

Search the UVM Libraries' collections

UVM Theses and Dissertations

Browse by Department
Format:
Online
Author:
Ojemann, Alexandra
Dept./Program:
Biochemistry
Year:
2017
Degree:
MS
Abstract:
Runx2 is a transcription factor required for bone formation and osteoblastic differentiation during normal development and is implicated in metastatic disease during breast cancer progression. Runx2 is highly expressed in many metastatic breast cancers and breast cancer cell lines Knockdown of Runx2 in various breast cancer cell lines restores epithelial characteristics and reduces proliferation, migration, and invasion. However, the role of Runx2 in breast cancer progression from early to late stages is not well understood. The MCF10A derived breast cancer progression model provides the opportunity to study the role of Runx2 in a series of cell lines that progress from nearly normal, with low Runx2 levels, to highly metastatic and aggressive, with much higher Runx2 levels. To address if removal of Runx2 affects gene expression and what pathways it may influence, specifically focused on breast cancer progression, we knocked down Runx2 using an shRNA lentivirus. Depletion of Runx2 inhibits the expression of mesenchymal markers including N-cadherin, Fibronectin, and Vimentin. Despite this finding, functional characteristics including proliferation, migration, and invasion were minimally affected. Possible reasons for the difference in results compared to other cell systems are discussed. As an alternative approach, we have generated stable, inducible cell lines using CRISPRi dCas9-KRAB to target Runx2 and in the future will investigate the effects of Runx2 knockdown in these cells.