Ask a Librarian

Threre are lots of ways to contact a librarian. Choose what works best for you.

HOURS TODAY

10:00 am - 3:00 pm

Reference Desk

CONTACT US BY PHONE

(802) 656-2022

Voice

(802) 503-1703

Text

MAKE AN APPOINTMENT OR EMAIL A QUESTION

Schedule an Appointment

Meet with a librarian or subject specialist for in-depth help.

Email a Librarian

Submit a question for reply by e-mail.

WANT TO TALK TO SOMEONE RIGHT AWAY?

Library Hours for Thursday, April 25th

All of the hours for today can be found below. We look forward to seeing you in the library.
HOURS TODAY
8:00 am - 12:00 am
MAIN LIBRARY

SEE ALL LIBRARY HOURS
WITHIN HOWE LIBRARY

MapsM-Th by appointment, email govdocs@uvm.edu

Media Services8:00 am - 7:00 pm

Reference Desk10:00 am - 3:00 pm

OTHER DEPARTMENTS

Special Collections10:00 am - 6:00 pm

Dana Health Sciences Library7:30 am - 11:00 pm

 

CATQuest

Search the UVM Libraries' collections

UVM Theses and Dissertations

Browse by Department
Format:
Online
Author:
Kozel, Carrie Lynn
Dept./Program:
Natural Resources
Year:
2017
Degree:
MS
Abstract:
Recruitment failure of lake trout (Salvelinus namaycush) in the Great Lakes has been attributed in part to the consumption of alewife (Alosa pseudoharengus) by adult lake trout, leading to Thiamine Deficiency Complex (TDC) and early mortality in fry. The current understanding of thiamine deficiency in lake trout fry is based on information from culture and hatchery settings, which do not represent conditions fry experience in the wild and may influence the occurrence of TDC. In the wild, lake trout fry have access to zooplankton immediately following hatching; previous studies found that wild fry begin feeding before complete yolk-sac absorption. However, hatchery-raised fry are not provided with food until after yolk-sac absorption, long after the development of TDC. Zooplankton are a potential source of dietary thiamine for wild fry in the early life stages that has not previously been considered in the occurrence of thiamine deficiency. We postulated that wild-hatched fry could mitigate thiamine deficiency through early feeding on natural prey. Specifically, we hypothesized 1) feeding should increase thiamine concentrations relative to unfed fry and 2) feeding should increase survival relative to unfed fry. Feeding experiments were conducted on lake trout fry reared from eggs collected from Lake Champlain in 2014 and Cayuga Lake in 2015. A fully crossed experimental design was used to determine the effect of early feeding by lake trout fry in thiamine replete and thiamine deplete treatments before and after feeding. Overall, thiamine concentrations and survival did not significantly differ between fed and unfed fry. Thiamine concentrations increased from egg stage to hatching in both years, suggesting a potential source of thiamine, which had not previously been considered, was available to the lake trout eggs during development.