Ask a Librarian

Threre are lots of ways to contact a librarian. Choose what works best for you.

HOURS TODAY

10:00 am - 3:00 pm

Reference Desk

CONTACT US BY PHONE

(802) 656-2022

Voice

(802) 503-1703

Text

MAKE AN APPOINTMENT OR EMAIL A QUESTION

Schedule an Appointment

Meet with a librarian or subject specialist for in-depth help.

Email a Librarian

Submit a question for reply by e-mail.

WANT TO TALK TO SOMEONE RIGHT AWAY?

Library Hours for Tuesday, April 16th

All of the hours for today can be found below. We look forward to seeing you in the library.
HOURS TODAY
8:00 am - 12:00 am
MAIN LIBRARY

SEE ALL LIBRARY HOURS
WITHIN HOWE LIBRARY

MapsM-Th by appointment, email govdocs@uvm.edu

Media Services8:00 am - 7:00 pm

Reference Desk10:00 am - 3:00 pm

OTHER DEPARTMENTS

Special Collections10:00 am - 6:00 pm

Dana Health Sciences Library7:30 am - 11:00 pm

 

CATQuest

Search the UVM Libraries' collections

UVM Theses and Dissertations

Browse by Department
Format:
Online
Author:
Giroux, Andrew
Dept./Program:
Electrical Engineering
Year:
2016
Degree:
MS
Abstract:
Modern society relies heavily on communication networks that in turn rely on both wired and wireless infrastructure. This work pertains to scenarios where a group of people or robots need to communicate in an environment where there is no preexisting communications infrastructure. These include sites of emergencies and disasters (e.g., inside burning buildings, search and rescue operations) and unexplored areas on Earth and other planets. Wireless ad hoc or mesh networks offer the ability to keep such entities connected, but they falter when any single entity wishes to leave the developed coverage area. Utilizing mobile repeater nodes can help, but is costly and complicated. By eliminating the need for repeater nodes to traverse the environment, their size and cost can be vastly reduced. This work explores the use of static "breadcrumb'' repeater nodes to increase the reach of such a network.
Determining when and where to place a static repeater node can be difficult in an environment where radio propagation characteristics are unknown. In this work, several algorithms for node placement are compared under the constraint that placement of a static repeater node should not dictate the entity's movement. The algorithms investigated range from calculating rolling averages to modeling channel parameters on-the-fly. The placement algorithms were configured to run in real-time on TP-Link MR-3040 portable WiFi routers and the approach is demonstrated in an outdoor uncharacterized environment.