Ask a Librarian

Threre are lots of ways to contact a librarian. Choose what works best for you.

HOURS TODAY

10:00 am - 3:00 pm

Reference Desk

CONTACT US BY PHONE

(802) 656-2022

Voice

(802) 503-1703

Text

MAKE AN APPOINTMENT OR EMAIL A QUESTION

Schedule an Appointment

Meet with a librarian or subject specialist for in-depth help.

Email a Librarian

Submit a question for reply by e-mail.

WANT TO TALK TO SOMEONE RIGHT AWAY?

Library Hours for Thursday, April 18th

All of the hours for today can be found below. We look forward to seeing you in the library.
HOURS TODAY
8:00 am - 12:00 am
MAIN LIBRARY

SEE ALL LIBRARY HOURS
WITHIN HOWE LIBRARY

MapsM-Th by appointment, email govdocs@uvm.edu

Media Services8:00 am - 7:00 pm

Reference Desk10:00 am - 3:00 pm

OTHER DEPARTMENTS

Special Collections10:00 am - 6:00 pm

Dana Health Sciences Library7:30 am - 11:00 pm

 

CATQuest

Search the UVM Libraries' collections

UVM Theses and Dissertations

Browse by Department
Format:
Online
Author:
Meadows, Jamie A.
Dept./Program:
Microbiology and Molecular Genetics
Year:
2015
Degree:
PhD
Abstract:
Pseudomonas aeruginosa is found in numerous environments and is an opportunistic pathogen affecting those who are immunocompromised. Its large genome encodes tremendous metabolic and regulatory diversity that enables P. aeruginosa to adapt to various environments. We are interested in how P. aeruginosa senses and responds to the host-derived compounds, carnitine and acylcarnitines. Acylcarnitines can be hydrolyzed to carnitine, where the liberated carnitine and its catabolic product glycine betaine can be used as osmoprotectants, for induction of the virulence factor phospholipase C, and as sole carbon, nitrogen, and energy sources. P. aeruginosa is incapable of de novo synthesis of carnitine and acylcarnitines and therefore imports these compounds from exogenous source. Short-chain acylcarnitines are imported by the ABC transporter CaiX-CbcWV. Medium- and long-chain acylcarnitines are hydrolyzed extracytoplasmically and the liberated carnitine is transported through CaiX-CbcWV. Once in the cytoplasm, short-chain acylcarnitines are hydrolyzed by the L-enantiomer specific hydrolase, HocS. The transcriptional regulator CdhR is divergently transcribed from the carnitine catabolism operon and we have identified the upstream activating region, the binding site sequence, and essential residues required for CdhR binding and induction of the carnitine operon. Carnitine catabolism is repressed by glucose and glycine betaine at the transcriptional level. Furthermore, using two different cdhR translational fusions we show that CdhR enhances its own expression and that GbdR, a related transcription factor, contributes to cdhR expression by enhancing the level of basal expression. These studies are the first to determine the mechanism of O-acylcarnitine transport, metabolism, and the regulation of these processes, which contribute to utilization of these compounds for P. aeruginosa survival in diverse environments.