Ask a Librarian

Threre are lots of ways to contact a librarian. Choose what works best for you.

HOURS TODAY

10:00 am - 3:00 pm

Reference Desk

CONTACT US BY PHONE

(802) 656-2022

Voice

(802) 503-1703

Text

MAKE AN APPOINTMENT OR EMAIL A QUESTION

Schedule an Appointment

Meet with a librarian or subject specialist for in-depth help.

Email a Librarian

Submit a question for reply by e-mail.

WANT TO TALK TO SOMEONE RIGHT AWAY?

Library Hours for Thursday, April 25th

All of the hours for today can be found below. We look forward to seeing you in the library.
HOURS TODAY
8:00 am - 12:00 am
MAIN LIBRARY

SEE ALL LIBRARY HOURS
WITHIN HOWE LIBRARY

MapsM-Th by appointment, email govdocs@uvm.edu

Media Services8:00 am - 7:00 pm

Reference Desk10:00 am - 3:00 pm

OTHER DEPARTMENTS

Special Collections10:00 am - 6:00 pm

Dana Health Sciences Library7:30 am - 11:00 pm

 

CATQuest

Search the UVM Libraries' collections

UVM Theses and Dissertations

Browse by Department
Format:
Online
Author:
Hinckley, David
Dept./Program:
Mechanical Engineering
Year:
2015
Degree:
MS
Abstract:
Satellite formation missions allow for scientific measurement opportunities that are only otherwise possible with the use of unrealistically large satellites. This work applies the Evolutionary Algorithm (EA), Differential Evolution (DE), to a 4-satellite mission design that borrows heavily from the mission specifications for Phase 1 of NASA's Magnetospheric Multi-Scale Mission (MMS). This mission specifies goals for formation "quality" and size over the arc when scientific measurements are to be taken known as the Region of Interest (ROI). To apply DE to this problem a novel definition of fitness is developed and tailored to trajectory problems of the parameter scales of this mission. This method uses numerical integration of evolved initial conditions for trajectory determination. This approach allows for the inclusion of gravitational perturbations without altering the method. Here, the J2 oblateness correction is considered but other inclusions such as solar radiation pressure and other gravitational bodies are readily possible by amending the governing equations of integration which are stored outside of the method and called only during evaluation. A set of three launch conditions is evaluated using this method. Due to computational limitation, the design is restricted to only single-impulse maneuvers at launch and the ROI is initially restricted but then expanded through a process known here as "staging". The ROIs of tests are expanded until they fail to meet performance criteria; no result was able to stage to the full MMS specified ±20° ROI but this is a result of the single-impulse restriction. The number of orbits a launch condition is able to meet performance criteria is also investigated. Revolutions considered and the ROIs therein contained are staged to investigate if the method is able to handle this additional problem space. Evidence of suitable formation trajectories found by this method is here presented.