Ask a Librarian

Threre are lots of ways to contact a librarian. Choose what works best for you.

HOURS TODAY

10:00 am - 3:00 pm

Reference Desk

CONTACT US BY PHONE

(802) 656-2022

Voice

(802) 503-1703

Text

MAKE AN APPOINTMENT OR EMAIL A QUESTION

Schedule an Appointment

Meet with a librarian or subject specialist for in-depth help.

Email a Librarian

Submit a question for reply by e-mail.

WANT TO TALK TO SOMEONE RIGHT AWAY?

Library Hours for Tuesday, April 16th

All of the hours for today can be found below. We look forward to seeing you in the library.
HOURS TODAY
8:00 am - 12:00 am
MAIN LIBRARY

SEE ALL LIBRARY HOURS
WITHIN HOWE LIBRARY

MapsM-Th by appointment, email govdocs@uvm.edu

Media Services8:00 am - 7:00 pm

Reference Desk10:00 am - 3:00 pm

OTHER DEPARTMENTS

Special Collections10:00 am - 6:00 pm

Dana Health Sciences Library7:30 am - 11:00 pm

 

CATQuest

Search the UVM Libraries' collections

UVM Theses and Dissertations

Browse by Department
Format:
Online
Author:
Picariello, Tyler
Dept./Program:
Biology
Year:
2015
Degree:
PhD
Abstract:
Ciliopathies are a group of disorders that arise from ciliary dysfunction. Meckelin (MKS3 or TMEM67) is a conserved transmembrane protein found at the transition zone of ciliated cells. In humans MKS3 is one of 3 genes linked to the ciliopathy Meckel Syndrome. This disease is characterized by occipital meningioencephalocoele, polycystic kidneys, fibrotic changes to the liver, postnatal polydactyly and situs inversus. Paramecium tetraurelia is a single celled ciliated eukaryote. Its surface is organized of a meshwork of cortical units that run the length of the cell. At the center of the cortical units are either one or two basal bodies. In two basal body units only the posterior basal body is ciliated. From the ciliated basal body, three rootlets project in stereotypical orientations: the post-ciliary rootlet projects posteriorly, the transverse microtubule projects toward the adjacent basal body row and the striated rootlet projects anteriorly. Both the post-ciliary rootlet and transverse microtubule are microtubule-based structures. The striated rootlet is composed of multiple subunits that are predicted to have conserved segmented coiled coil domains known as SF-Assemblin domains. In Picariello at al., 2014, we showed that MKS3 is present in the transition zone of Paramecium tetraurelia and that RNAi for MKS3 leads to global ciliary loss. Additionally, RNAi for MKS3 results in the disorganization of the basal body rows. Within the areas of disorganization, the basal bodies along with their striated rootlets, post-ciliary rootlets and transverse microtubules are rotated away from their expected orientation. Interestingly, the post-ciliary rootlet and transverse microtubule are still attached at the expected angles relative to each other within the areas of disorganization. Initial GST pull-down experiments using the coiled coil domain of MKS3 suggest a potential interaction between MKS3 and the striated rootlet family members KdC1 and KdB2. To test potential interactions between MKS3 and the striated rootlet we identified 27 potential striated rootlet family members in Paramecium. Full-length sequences for 13 of these genes were marked at their N-terminus with a 3x FLAG sequence. Components with a conserved SF-Assemblin domain were distributed uniformly within the striated rootlet. Components lacking the SF-Assemblin domain were found in various cellular locations, but not within the striated rootlet. GST pull-down experiments utilizing the MKS3 C-terminus as bait were performed using cells expressing the FLAG-tagged striated rootlet family members. Unfortunately a clear interaction between MKS3 and the striated rootlet remains elusive. The organized nature of the surface of Paramecium has allowed us to identify a previously unrealized function for MKS3. Our immunofluorescence data suggest that MKS3 functions outside the transition zone to maintain basal body row organization by potentially contributing to a link between the basal body and the striated rootlet. Without the link, the migrating basal bodies are free to rotate and project their rootlets in the wrong directions. Although the nature of the link remains elusive, the identification of disorganized basal body rows upon MKS3 reduction suggests that, in addition to ciliary dysfunction, basal body polarity defects may contribute to the development of MKS.