Ask a Librarian

Threre are lots of ways to contact a librarian. Choose what works best for you.

HOURS TODAY

11:00 am - 3:00 pm

Reference Desk

CONTACT US BY PHONE

(802) 656-2022

Voice

(802) 503-1703

Text

MAKE AN APPOINTMENT OR EMAIL A QUESTION

Schedule an Appointment

Meet with a librarian or subject specialist for in-depth help.

Email a Librarian

Submit a question for reply by e-mail.

WANT TO TALK TO SOMEONE RIGHT AWAY?

Library Hours for Friday, March 29th

All of the hours for today can be found below. We look forward to seeing you in the library.
HOURS TODAY
8:00 am - 6:00 pm
MAIN LIBRARY

SEE ALL LIBRARY HOURS
WITHIN HOWE LIBRARY

MapsM-Th by appointment, email govdocs@uvm.edu

Media Services8:00 am - 4:30 pm

Reference Desk11:00 am - 3:00 pm

OTHER DEPARTMENTS

Special Collections10:00 am - 5:00 pm

Dana Health Sciences Library7:30 am - 6:00 pm

 

CATQuest

Search the UVM Libraries' collections

UVM Theses and Dissertations

Browse by Department
Format:
Online
Author:
Ghosh, Parna
Dept./Program:
Cell and Molecular Biology Program
Year:
2014
Degree:
MS
Abstract:
Heme Oxygenase (HO) is an enzyme universally found in animals, plants and microbes. In plants, the role of heme oxygenase in the synthesis of the phytochrome chromophore is well recognized and has been extensively studied; however its role in regulating reactive oxygen species (ROS) in plants is just beginning to be explored, particularly in legumes. Legumes interact with Rhizobium bacteria to form symbiotic nitrogen fixing nodules. ROS plays an important role in the development of roots as well as symbiotic nodules. In the model legume Medicago truncatula, ROS in the root is regulated in part by the LATD/NIP gene. The M. truncatula giraffe mutant has a deletion that removes the entire HO coding sequence. We have found that the M. truncatula GIRAFFE HO regulates expression of some of the LATD/NIP-regulated ROS genes such as RESPRATORY BURST OXIDASE HOMOLOG C (RBOHC) and a cell wall peroxidase (cwPRX2) in seedlings. This means that the wild-type function of GIRAFFE is to up-regulate expression of RBOHC and cwPRX2 in roots, in contrast to LATD/NIP, which down-regulates them. We also found that LATD/NIP and GIRAFFE do not regulate expression of each other in seedlings. Given that the highest expression of GIRAFFE HO is in a senescing nodule, we tested the expression of ROS-regulatory enzymes in senescing nodules. We found that GIRAFFE up-regulates expression of RBOHC during nitrate-induced nodule senescence. At present, with changing climatic conditions and exposure to various environmental stresses that can alter ROS homeostasis, characterizing the role of GIRAFFE in the antioxidant machinery of legumes can be useful in improving crop productivity and for enhancing soil fertility.