Ask a Librarian

Threre are lots of ways to contact a librarian. Choose what works best for you.

HOURS TODAY

11:00 am - 3:00 pm

Reference Desk

CONTACT US BY PHONE

(802) 656-2022

Voice

(802) 503-1703

Text

MAKE AN APPOINTMENT OR EMAIL A QUESTION

Schedule an Appointment

Meet with a librarian or subject specialist for in-depth help.

Email a Librarian

Submit a question for reply by e-mail.

WANT TO TALK TO SOMEONE RIGHT AWAY?

Library Hours for Friday, March 29th

All of the hours for today can be found below. We look forward to seeing you in the library.
HOURS TODAY
8:00 am - 6:00 pm
MAIN LIBRARY

SEE ALL LIBRARY HOURS
WITHIN HOWE LIBRARY

MapsM-Th by appointment, email govdocs@uvm.edu

Media Services8:00 am - 4:30 pm

Reference Desk11:00 am - 3:00 pm

OTHER DEPARTMENTS

Special Collections10:00 am - 5:00 pm

Dana Health Sciences Library7:30 am - 6:00 pm

 

CATQuest

Search the UVM Libraries' collections

UVM Theses and Dissertations

Browse by Department
Format:
Online
Author:
Zhang, Zhe
Dept./Program:
Chemistry
Year:
2014
Degree:
PhD
Abstract:
Edible potatoes originated in the Andes and were brought to Europe in the 16th century. Their introduction spurred both the European population growth and economic development. Being the world's fourth-largest food crop, potatoes continue to shape the global economy and world history. Glycoalkaloids are natural insect deterrents generated by potatoes, and are known for their toxic effects as well as potential medicinal utilities. Demissidine, the aglycone of the primary glycoalkaloids, represents one major Solanum alkaloid. Its unique indolizidine framework presents a challenging synthetic target in organic chemistry. Our synthesis of demissidine starts from readily available epiandrosterone and takes advantage of a Lewis acid-mediated fragmentation of a [gamma]-silyloxy-[beta]-hydroxy-[alpha]-diazoester; the D-ring of a diazo ester derivative of epiandrosterone was efficiently ruptured to provide an aldehyde tethered ynoate product. In combination with a subsequent azomethine ylide 1,3-dipolar cycloaddition and a transition metal catalyzed oxidation/reduction, the core indolizidine framework of demissidine was successfully prepared in a stereoselective manner. In addition, the syntheses of two amino acids, 5-methylenepipecolic acid and (5S)-5-methylpipecolic acid were explored; they are used for the installation of the Îł-oriented C25 methyl group on demissidine. The successful preparation of demissidine was supported by NMR analysis of the synthetic compound in comparison with a natural sample. As an efficient and stereoselective synthesis, our efforts toward demissidine illuminate a strategy to indolizidine frameworks that could be applied in the preparation of other polycyclic amine natural products.