Ask a Librarian

Threre are lots of ways to contact a librarian. Choose what works best for you.

HOURS TODAY

11:00 am - 3:00 pm

Reference Desk

CONTACT US BY PHONE

(802) 656-2022

Voice

(802) 503-1703

Text

MAKE AN APPOINTMENT OR EMAIL A QUESTION

Schedule an Appointment

Meet with a librarian or subject specialist for in-depth help.

Email a Librarian

Submit a question for reply by e-mail.

WANT TO TALK TO SOMEONE RIGHT AWAY?

Library Hours for Friday, April 19th

All of the hours for today can be found below. We look forward to seeing you in the library.
HOURS TODAY
8:00 am - 6:00 pm
MAIN LIBRARY

SEE ALL LIBRARY HOURS
WITHIN HOWE LIBRARY

MapsM-Th by appointment, email govdocs@uvm.edu

Media Services8:00 am - 4:30 pm

Reference Desk11:00 am - 3:00 pm

OTHER DEPARTMENTS

Special Collections10:00 am - 5:00 pm

Dana Health Sciences Library7:30 am - 6:00 pm

 

CATQuest

Search the UVM Libraries' collections

UVM Theses and Dissertations

Browse by Department
Format:
Online
Author:
Harrison, Mary
Dept./Program:
Biomedical Engineering Program
Year:
2012
Degree:
MS
Abstract:
Current biofuel production methods use engineered bacteria to break down cellulose and convert it to biofuel. However, this production is limited by the toxicity of the biofuel to the organism that is producing it. Therefore, to increase yields, microbial biofuel tolerance must be increased. Tolerant strains of bacteria use a wide range of mechanisms to counter act the detrimental effects of toxic solvents. Previousresearch demonstrates that efflux pumps are effective at increasing tolerance to various biofuels. However, when overexpressed, efflux pumps burden cells, which hinders growth and slows biofuel production.
Therefore, the toxicity of the biofuel must be balanced with the toxicity of pump overexpression. We have developed a mathematical model and experimentally characterized parts for a synthetic feedback loop to control efflux pump expression so that it is proportional to the concentration of biofuel present.
In this way, the biofuel production rate will be maximal when the concentration of biofuel is low because the cell does not expend energy expressing efflux pumps when they are not needed. Additionally, the microbe is able to adapt to toxic conditions by triggering the expression of efflux pumps, which allows it to continue biofuel production. The mathematical model shows that this feedback loop increases biofuel production relative to a model that expresses efflux pumps at a constant level by delaying pump expression until it is needed. This result is more pronounced when there is variability in biofuel production rates because the system can use feedback to adjust to the actual production rate. To complement the mathematical model, we also constructed a whole cell biosensor that responds to biofuel by expressing a fluorescent reporter protein from a promoter under the control ofthe sensor.